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Abstract

Reaction-diffusion systems with skew-gradient
structure can be viewed as a sort of activator-
inhibitor systems. We use variational methods
to study the existence of steady state solutions.
Furthermore, there is a close relation between
the stability of a steady state and its relative
Morse index. Some numerical results will also

be disussed.
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1 Introduction

In this note we consider reaction-diffusion sys-

tems of the form

Miuy = DiAu+ Fi(u,v), (1.1)

Movy = DoAv — Fy(u,v),

xeQ, t>0. (1.2)

Here 2 is a smooth bounded domain in R",
u(x,t) is an my-dimensional vector function,
v(z,t) is an meo-dimensional vector function,
My, My, D1 and Ds are positive definite ma-
trices, and there exists a function F' such that
VF = (F1, F,). Such systems can be viewed
as a sort of activator-inhibitor systems.

A well-known example is

up = diAu+ f(u) — v, (1.3)

TV = daAv + ou — v, (1.4)

where dy,ds, 0,7, 7 € (0,00) and f is a cubic

polynomial. The case of ds = 0 has been con-



sidered as a model for the Hodgkin-Huxley sys-
tem [13, 22] to describe the behavior of electri-
cal impulses in the axon of the squid. More
recently, several variations of this system ap-
peared in neural net models for short-term
memory and in nerve cells of heart muscle.
As in [29], (1.1)-(1.2) will be referred as a
skew-gradient system in which a steady state

is a critical point of

1 1
D (u,v) /Q §(D1Vu, Vu) — §(D2Vv, Vo)

— F(u,v)dz. (1.5)

A steady state (@, v) is called a mini-maximizer
of ® if u is a local minimizer of ®(-,v) and v is
a local maximizer of ®(u, -). It has been shown
[29] that non-degenerate mini-maximizers of
® are linearly stable. This result gives a
natural generalization of a stability criterion
for the gradient system in which all the non-
degenerate local minimizers are stable steady
states.

A remarkable property proved in [29] is that
any mini-maximizer must be spatially homoge-
neous if €2 is a convex set. This kind of results
have been established by Casten and Holland
[5] and Matano [20] for the scalar reaction-
diffusion equation, and generalized by Jimbo

and Morita [15] and Lopes [19] for the gradient

system. In case () is symmetric with respect
to xj, Lopes [19] showed that a global mini-
mizer of gradient system is symmetric with re-
spect to x;; while Chen [7] obtained parallel
results for the global mini-maximizers in the
skew-gradient system.

In connection with calculus of variations,
there is a close relation between the stability of
a steady state of skew-gradient system and its
relative Morse index. Based on this idea, some
stability criteria for the steady states of (1.1)-
(1.2) are illustrated in section 2. In section 3,
variational arguments are used to study the ex-
istence of steady states and their relative Morse
indices. Section 4 contains numerical investi-
gation of skew-gradient systems. A particular

example to be studied is

ug = diuge + f(u) —v—w,
ToUs =  doUgy + U — YoU,
3wy = d3Weqe + U — Y3W,

which served as a model [4] for gas-discharge

systems.

2 Stability Criteria

Let E be a Hilbert space. For a closed subspace
U of E, Py denotes the orthogonal projection



from E to U and UL denotes the orthogonal
complement of U. For two closed subspaces U
and W of F/, denoted by U ~ W if Py — Py is a
compact operator. In this case, both W N U+
and W+ N U are of finite dimensional. The

relative dimension of W with respect to U is

defined by

dim(W,U) = dim(WnU?b)

—dim(W+nU). (2.1)

If A is a self-adjoint Fredholm operator on F,
there is a unique A-invariant orthogonal split-

ting
E=FE. (A)@ E_(A)® Ey(A)

with E,(A), E_(A) and Ey(A) being respec-
tively the subspaces on which A is positive def-
inite, negative definite and null. For a pair
of self-adjoint Fredholm operators A and A, it
will be denoted by A ~ A if E_(A) ~ E_(A).

In this case, a relative Morse index i(A, A) is

defined by

i(A, A) = dim(E_(A), E_(4)).  (2.2)

We refer to [1] for more details of relative
Morse index.
For a critical point (u,7) of @, let ®”(u,v)

denote the second Frechet derivative of ® at

(u,v). A critical point (u,v) is called non-

degenerate if the null space of ®”(u,v) is triv-

ial. Let
M; O -D; O
M = ,D - )
0 M, 0 Dy
o0 In, 0
0 I,

and I, be the k x k identity matrix. For a gradi-
ent system, it is known that a non-degenerate
critical point with non-zero Morse index is an
unstable steady state. The next theorem gives

a parallel result for the skew-gradient system.

Theorem 1. Suppose i(—Q, ®”(u,v)) # 0 and
dimEy(®"(u,v)) = 0, then for any positive def-
inite matrices My and Ma, (4, ) is an unstable
steady state of (1.1)-(1.2).

In [29] Yanagida pointed out an interest-
ing property that a non- degenerate mini-
maximizer of ® is always stable for any posi-
tive matrices M; and My given in (1.1)-(1.2).
An interesting question is whether there ex-
ist steady states with stability depending on
the reaction rates of the system. Let P and
P~ be the orthogonal projections from E to
E,(Q) and E_(Q) respectively. Define ¥y =
M~3(DA — V2F(a,3)) M™%, ¢ = P~ WP~



and 1y = PTUGPT. Set m = mq + mo,
D = HX(Q,R™),
. <¢1Z,Z>L2
; = inf ~— '~ 2.3
and
<¢2Z,Z>L2
pa(ths) = sup W22 (2.4)
weo P27,

Theorem 2. Assume that i(—Q, ®"(u,v)) =0
and dimFEy(®"(a,v)) = 0. Then (1, ) is stable
if pi(¥1) > ps(2).

Remark. In case we treat the Dirichlet
boundary condition u|gg = v|go = 0, D is re-

placed by H?(Q,R™) (N Hi(Q,R™).

The proofs of Theorem 1 and Theorem 2 can

be found in [8].

3 Applications of Theorem 1

and Theorem 2

In dealing with a strongly indefinite functional
®, a critical point theorem established by
Benci and Rabinowitz [3] can be used to ob-

tain steady states of (1.1)-(1.2).

Theorem 3. Let E be a separable Hilbert

space with an orthogonal splitting £ = W &

W_, and B, = {£{|{ € E, ||£]| < r}. Assume
that ® (&) = (A&, &) + b(€), where A is a self-
adjoint invertible operator on E, b € C%(E, R)
and V' is compact. Set S = 0B, N W, and
N ={¢( +sel¢” € B.NW_ and s € [0, R]},
where e € 0By NW,, 7 > 0and R > p > 0.
If & satisfies (PS)* condition and supyy ® <
infg ®, then ® possesses a critical point & such

that infg ® > ®(&) > supyy . Moreover, if
W_ ~ E_, then

i(A,@"(§)) < dim(W_,E_)+1 <i(A,3"()

+ dimEo (9" (£)). (3.1)

Remark. (a) See e.g. [2, 8] for the definition
of (PS)* condition.

(b) The index estimates (3.1) were obtained by
Abbondandolo and Molina [2].

In a demonstration of using Theorem 3 to
study the existence and stability of steady
state solutions, we consider a perturbed

FitzHugh-Nagumo system in the first example

ug = diAu+ f(u) — v, (3.2)

Tv = doAv + u — yv — h(v). (3.3)

A steady state of (3.2)-(3.3) is a critical point



of
d d
Buv) = [ FIVu = 2ITe ~ Fu )iz
2 2
where
_ Ly B+1 3 B,
F(u,v) = —(4u 3 U —|—2u) uv
—I—;v + H(v), (3.4)
B € (0,3) and H(v) fo dy. Tt is as-
sumed that v > 9(23% — 53 + 2)_ , and h sat-

isfies the following condition:
(h1) h € C', h(0) = W (0) = 0 and yh(y) > 0
for y € R.

Define

Let
i = 5l (70 +)
+/((di+d2) M — f/(0) +7)2+4]
and
b = gl (£(0) +7)
—v/([di+d2)\e—f/(0) +7)>+4],

where {—\;} are the eigenvalues of the Laplace
operator and { ¢y} are the corresponding eigen-

functions. By straightforward calculation

Ae;:st = /‘k €L ¢k and Aek o = Nk ek¢ka

where

of = (V@ T B O TP
~ [(dy + d2) A~ £/(0) + 7)),

i = (L d)A— F(0) 5

+ v/ ((d1 + da) X — F/(0) + )2 + 4]).

It is clear that ,uZ’ > 0and pu, <Oforallk € N.
Let £, = EBZOZIV,:' and E_ = @®72, V., where

= {spref|s € R} and Vo = {sepey |s €
R}. Define AT = A|g,, A~ = Alg_ and

(Ao, 20) = /Q (AH)Ezr, (AF)E2)

for 21,20 € E. As an application of Theorem

3, we have the following result.

Theorem 4. Let Bgr be a ball in R™ with
radius R. If Q contains a ball Br with R be-
ing sufficiently large, then there exists a steady

state (u,v) of (3.2)-(3.3), and

i(-Q, ®"(u,v) <1 <i(-Q, 2"(u,v))

+ d’imEo(q)//(’L_L, 0)).

In view of Theorem 1, (@, ) is unstable if it
is a non-degenerate critical point of ®. More

details can be found in [§].



We now turn to some examples to seek stable
steady states of skew-gradient systems. Con-

sider

up = Au —u — v, (3.5)

TU = Av + 20+ u — |v|v. (3.6)

Straightforward calculation gives

—A+1 1
A= ,
1 A+2

p =103+ VXN —1)2+4) and p, = 13—

(2Ar —1)2+4). It is clear that pu; > 0 for
all £ € N. Suppose Q is a bounded domain
in which the eigenvalue distribution of the
Laplace operator (under homogeneous Dirich-

let boundary conditions) satisfies the following

property:
1
A1<§(\/5+1)</\2§A3§---§Ak---

Then it is easily seen that y;” > 0, and p, <0
if kK > 2. It follows that i(—Q, A) = —1.

Theorem 5. There is a non-constant steady
state (u,v) of (3.5)-(3.6).

dim(®"(u,v)) = 0 and 7 > %;ii,

Moreover, if

then (u, )
is stable.
In the next example, consider (1.3)-(1.4)

with f(u) = au — v and ¢ = 1. Suppose

there is a j € N such that if

dlx\j—l- <a<

daAj +

s rem AN IRy

inf{di\
ln{lk—i—dg/\k

By direct calculation ,u;' < 0 and ,uZ’ > 0 for
k € N\{j}. Also, i, <0 for all k € N. Hence
i(—Q,A) = 1. Applying Theorem 3 yields a
steady state (u,v) of (1.3)-(1.4). Furthermore,

) <0<i(-Q,—2"(a,0))

]|

Z(_Qv —{)H(’L_L’
+ d’imEo(q)//(’L_L, 0)).

This implies that i(—Q, —®" (@, v)) = 0 if (u, v)
is a non-degenerate critical point of ®. Then by
Theorem 2, (@, ) is stable if 7 < 2. In case of
dealing with homogeneous Neumann boundary
conditions, (@, ) is a spatially inhomogeneous
steady state if (3.7) holds for j > 2. In other
words, there exists a stable pattern for (1.3)-

(1.4).

For the FitzHugh-Nagumo system, the
steady state solutions satisfy
diAu+ f(u) —v =0, (3.8)
d
ZAvHu——v=0, (3.9)
o

where f(u) = (1—u)(u—B)u, B € (0,3). If £ =
o~ (—daA+v)~! under homogeneous Dirichlet

(respectively Neumann) boundary conditions,



then for any critical point u of

vl = [ 150VaP + utw) - [ 7(Qdcias

(u, Lu) is a steady state of FitzHugh-Nagumo

system. In view of the fact that o / uLludr =
Q

/ do|Vv|? + yv?dz, it is easily seen that 1 is
bgunded from below. In addition to minimiz-
ers, the Mountain Pass Lemma has been used
to obtain non-trivial solutions [9, 10, 11, 17,
21, 24, 28, 32] of (3.8)-(3.9)

Let u be a critical point of ¢. Straightfor-

ward calculation yields
P'(u) = —A+ L~ f'(u),

where 1" is the second Frechet derivative of 1
and the Morse index of u will be denoted by
ix(¢"(u)). On the other hand, (u, Lu) is also a

critical point of

B(u,v) = /Q[%w 2= 92902 4w
) “
- gt [ fedelas

Proposition 1. If u is a critical point of

and v = Lu, then
dimEo(¢" (u)) = dimEo(®"(u, v))

and

i (¢ () = i(-Q, 2"(u, v)).

We refer to [8] for a proof of Proposition 1.
For a critical point u obtained by the Moun-

tain Pass Lemma, it is known [6] that

i (¢"(w) < 1 < i (¥ (u) + dimEo(¢"(u)).

Then by Proposition 1
i(=Q, 2"(u, Lu)) < 1 < i(=Q, @"(u, Lu))
+ dimEo(®" (u, Lu)).

Thus if dimEy(¢"(u)) = 0, it follows from The-

orem 1 that (u, Lu) is an unstable steady state

of (1.3)-(1.4).
Let ¢y = P~ (DA — V2F(4,0))P~, 1 =
PT(DA — V2F(u,v))PT,
R (ENY
pi(P1) = zle”}fD P22, (3.10)
and
TN <¢2Z z>L2
P = e, G

Theorem 6. Assume that i(—Q, ®"(u,v)) =0
and dimFEy(®"(a,v)) = 0. Then (1, ) is stable
if one of the following conditions holds:

(i) pi(11) > 0, ps(th2) > 0 and

ps(¢2) M—1 —1 M -1
i) <M M

(i) pi(h1) <0, ps(12) < 0 and
pz(&l)

< 1M M



Theorem 6 directly follows from Theorem 2.

We refer to [8] for the detail.

If w is a non-degenerate minimizer of
and v = Lu, then Proposition 1 implies that

i(—Q, ®(u,v)) = 0. Notice that

DA — V*F(u,v) =

A - flw) 1

Since f/(§) = =32 +2(B+ 1) — 3 < (82 —
B 4 1)/3, it easy to check that p;(¢) =
pi(—diA — f'(u)) > did1 — (52_%1)
ps(2) = ps(LA — 1) < —(daA1 + 7)/o,
where \j < dg < A3 < - < A\ < -+
If pi(¢1) < 0 and

condition (ii) of Theo-

and

are

the eigenvalues of —A.

3(d2A1+7)
o((82—B+1)—3d1\1)’

rem 6 holds and consequently (u, v) is a stable

T <

steady state of (1.3)-(1.4).

4 Numerical Results

We report some numerical work on the skew-
gradient systems, and compare with the theo-

retical results.

4.1

We start with the following reaction-diffusion

system :
w = diUge +ulu— )1 —u)
— v —w, (4.1)
ToUr = doUze + U — Y2U, (4.2)
T3wy = d3Wgy +u — 3w,
x € (0,1),t>0. (4.3)

where 8 = 0.3, 72 = 1, v3 = 20, and the ho-
mogeneous Neumann boundary conditions will
be under consideration. In (4.1)-(4.3), u can
be viewed as an activator while v and w act
as inhibitors. In view of the theoretical re-
sults mentioned in the previous sections, we
look for the pattern formation for (4.1)-(4.3) in
case the diffusion rate of the activator is small
(dp = 1079).

By taking do = 1 and d3 = 1075, various
types of spatially inhomogeneous steady states
have been observed through numerical calcu-
lation. In Figure 1 and Figure 3, there is one
peak on the profile of u; the one in Figure 1 is
symmetric with respect to the spatial variable,
while the other is not. We found also instances

of steady states with two peaks on the profile



of u; but the distance between peaks can be
different. We remark based on numerical ob-
servation that, with 7 = 75 = 10™4, such inho-
mogeneous steady states are stable under the
flow generated by (4.1)-(4.3). Moreover, the
solution profiles tell that w is roughly equal to

Y5 Ly in magnitude.

0.2 0.4 0.6 0.8 1

Figure 1: solution profile of u
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Figure 2: profiles of v and w
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igure 4: profiles of v and w
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Figure 5: solution profile of u

0.2

0.4

0.8




Figure 6: profiles of v and w
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Figure 8: profiles of v and w

We next turn to the case when both in-
hibitors v and w are acting with large diffu-
sion (d2 = d3 = 1). As show in Figure 9-10,
the pulse (or peak of u) becomes wider. The

fact that v3 > o results in v > w.
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Figure 9: solution profile of u

0.2 0.4 0.6 0.8 1

Figure 10: profiles of v and w

Keeping d3 = 1 and reducing dy to 1071, we
obtain a stable steady state with rather differ-

ent profiles as shown in Figure 11-12.
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Figure 12: profiles of v and w

4.2

In this subsection we come back to the

reaction-diffusion system

Ut = Ugy —U—V,
TV = Ve + 20+ u— |v|v,
z€(0,3),t>0,

u(0,t) = wv(0,t) =u(3,t) =v(3,t) =0.

As we know from Theorem 5, the choice of
7 = 0.1 leads the flow converging to a non-
constant steady state (Figure 13). The behav-
ior in the phase plane of the state variables, at
the midpoint of the domain (z = 1.5), exhibits
a spiral-inward convergence (Figure 14).

On the other hand, we conjecture that such
a non-constant steady state become unstable if
the value of 7 is taking much smaller. Indeed,
when 7 = 0.005, we observed a time-periodic

attractor (Figure 15-16) .

Times=20 1=0.1

Figure 13: flow of u with 7 = 0.1

Times=20 1=0.1

11



Figure 14: the trajectory of (u(1.5,t),v(1.5,1))

Times=6 1=0.005

Figure 15: flow of u with 7 = 0.005
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Times=20 1=0.005

-15 L L L L L L L L L
-025 -02 -015 -0.1 -0.05 0 005 01 015 02 025
u

Figure 16: the trajectory of (u(1.5,t),v(1.5,1)

The convergence history of the two calcu-

lated state variables is recorded in Figure 17-

18, which strongly suggests the existence of a

stable time-periodic solution. The change of

stability seems to result from a Hopf bifurca-

tion and deserves further investigation.

12

Figure 17:

Figure 18:

“The difference of the value u

Historic space-accumulated

{1 —difference of u

Historic  space-accumulated

{1 —difference of v
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