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Bending-wave instability of a vortex ring in a trapped Bose-Einstein condensate
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Using a velocity formula derived by matched asymptotic expansion, we study the dynamics of a vortex ring
in an axisymmetric Bose-Einstein condensate in the Thomas-Fermi limit. The trajectory for an axisymmetri-
cally placed and oriented vortex ring shows that it generally precesses in a condensate. The linear instability
due to bending waves is investigated both numerically and analytically. General stability boundaries for various
perturbed wave numbers are computed. Our analysis suggests that a slightly oblate trap is needed to prevent the

vortex ring from becoming unstable.
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Vortices are fundamental excitations in gases or liquids,
characterized by circulation of fluid around a core. Among
all vortical structures, vortex rings (VRs) with closed-loop
cores are perhaps the most familiar to our daily experience;
their compact and persistent nature has fascinated many re-
searchers for a long time [1]. They can be found in various
scales in nature, from the well-known smoke rings of ciga-
rettes to the VRs observed in the wakes of aircraft. Remark-
ably, quantized VRs with cores of angstrom size have been
proved to exist when charged particles are accelerated
through superfluid helium [2,3]. The recent achievement of
quantized vortices in a trapped Bose-Einstein condensate
(BEC) [4-6] have suggested the possibility of producing
VRs in ultracold atoms. Several schemes for producing VRs
in atomic BECs have been put forward [7—12]. In particular,
Feder er al. [10] have proposed using dynamical instabilities
in the condensate to make a dark soliton decay into VRs.
Based on this scheme, VRs in a trapped BEC were first re-
alized experimentally by Anderson er al. [13].

In fluids, a VR can move along its axis with a self-
induced velocity. Despite their solitary nature, VRs are sus-
ceptible to azimuthally wavy distortions and these so-called
bending waves may be amplified under certain circum-
stances. The bending-wave instability of classical VRs has
been extensively studied in the past few decades, and its
inviscid instability was first explored by Widnall et al. [14];
it is a short-wave instability, characterized by k&~ O(1),
where k is the wave number of the unstable wave and £ is the
size of vortex core. In this Rapid Communication, we exam-
ine the bending-wave instability of a VR in a trapped BEC.
The vortex dynamics in a superfluid generally resembles that
in a normal inviscid fluid even though the circulation is
quantized in the superfluid. However, some essential differ-
ences remain regarding the bending-wave instability. For ex-
ample, the core size of a quantized vortex is extremely small
in a large BEC [15], where we may assume &— 0. Accord-
ingly, kK —oo under the condition k£~ O(1), and therefore the
Widnall instability would never occur in this limiting case.
Yet the trapping potential causes vortex stretching, and the
bending-wave instability with wavelength comparable to the
ring radius may still occur.

To analyze the stability of the VR in a trapped BEC, we
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use a scheme developed by Svidzinsky and Fetter, which
utilizes the quantum analog of Biot-Savart law to determine
the local velocity for each element of the vortex [16]. The
velocity formula is derived from the time dependent
Gross-Pitaevskii equation by the method of matched
asymptotic expansions in the Thomas-Fermi (TF) limit.
To be specific, we shall consider a trapping potential
V(x)=m(w’ r*+wz?)/2 in the cylindrical coordinates
(r,0,z), with the aspect ratio defined by A=w,/w,. The
density profile of the condensate is given by p(x)
=po(1-r*/R% -2*/R?) in the TF limit, where R,
=(2u/mao?)"? and R.=(2u/maw?)"? are, respectively, the ra-
dial and axial TF radii of the trapped BEC; u is the chemical
potential and py=um/4h’a is the central particle density.
Thus, the velocity of a vortex line element at X in a nonro-
tating trap is given by [16]

tx VV(X)) W

v(x) = A(§, K)(Kb + (o

where A(€,k)=(=%/2m)In(EVR >+ «%/8); 1 is the unit vec-

tor tangent to the vortex line at x, and b is the associated
binormal unit vector; « is the curvature of the vortex line at
x. Here the vortex is assumed to carry one quantum of cir-
culation.

The first term in the large parentheses of Eq. (1) is from
the local induction approximation (LIA), when the vortex is
treated as an infinitely thin filament. It says that the motion is
self-induced by the local curvature and is heading in the
direction of f) In fact, the LIA alone ensures that the arc
length between any two points on the vortex line remains
invariant and thus the vortex is not stretched, which means
the bending-wave instability will never happen [17]. Never-
theless, the external potential brings in a stretching force,
t X VV(x), which makes the bending-wave instability pos-
sible. Suppose a circular VR of radius r is initially formed
axisymmetrically and remains so afterward, so that t=e,,
Kf):(l/ rle.. Since é<r< R, the logarithmic term in
A(&, k) is predominated by the numerical factor In & whose
magnitude is large as £—0. Hence A(&,«x) varies very
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FIG. 1. (a) Phase portrait for Eq. (3) with A=1 and R | =10. The
dashed line indicates the TF limit. (b) Axial velocity z (scaled in
trap units) as a function of T=A¢ for various r(0). The solid,
dashed, dotted, and dash-dotted lines represent the cases of
r(O)/req=0‘5, 0.9, 1.1, and 1.5, respectively.

slowly with r and we may treat it as a constant. The motion
equations then becomes

1 2\% . 1 =2r 1

’ AZ= G(r,2) - ;’ @

Ar= G(r,2)’ -

where G(r,z)=R* —r>~\%?, and the length, time, and en-
ergy are scaled by (Ai/mw,)"?, 7', and fiw , respectively.

The equation 6=0 is redundant. Numerical calculations of
the equations of r and z show that the VR moves up and
down along z axis cyclically with its radius expanding and
shrinking simultaneously. Dividing 7 by 7, we obtain the dif-
ferential equation relating r and z,

dr 2N%rz 3)
dz Ri —372 - \%?

of which the solution is rG(r,z)=C, where C is a constant.
To explore this solution further, we obtain a family of con-
tours with different C’s for a given A, indicating the cyclic
motion of the VR as shown in Fig. 1(a) and its associated
ring’s z component velocity varying with time for several C’s
in Fig. 1(b). Among all precession solutions, there is a
unique stationary solution with r,=R  / V3, Zeq=0, which is
independent of A and agrees with the result in Ref. [8]. Let-
ting 7y, and rp,. be the minimum and maximum values
of r for a certain C, we then have C =r1nin(Ri—rfnin
=rmax(R2 =7%.). Integrating the radial equation in Eq. (2)
with r(o):rmim p:(rzmax_rzmin)l/za and qz[rmax(zrmin-"rmax)]’
we find that r can be expressed in a closed form of ¢, i.e.,

"min’ max (4)
2 2.
FmaxCN™ 7T+ FpipSNT 7T

Here sn 7=7—(1+k*) /3! +(1+ 14> +k*) 7 /5! +- - and cn
7=1-7/2'+(1+4k*)7*/4 ! +--- are Jacobian elliptic func-
tions [18], with 7=2ANgt/C, k=p/q.

To study the bending-wave stability of the unperturbed
solution given above, let us initialize the coordinates as
r()=ro(t)+er(0,1), 6(t)=6y(1)+e6,(r), and z(r)=z¢(r)
+ez,(0,1), where er|, €6,, and ez, denote the small pertur-

r(t) =
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FIG. 2. Stability boundary curves of |n|=1 to 10 (from bottom
to top) for R, =10. The solid line is the stability boundary of
[n|=1; the circle of |n|=2; the square of |n|=3, and so forth. For
[n| # 1, the region above each boundary curve is unstable for the
corresponding mode and stable below. For |n|=1, the boundary
curve is simply A=1; above this it is stable and below it (including
it) unstable. The cross on the horizontal axis denotes re.

bations with €< 1. According to the Seret-Frenet formula
kb=t X fi=(9x/ds) X (#x/ds*), where s is the arc length.

Currently, it is more suitable to parametrize £ and b in terms
of 6 rather than s. Using the chain rule and the relation ds

~

=|9x/36|d6, it follows that i=(ax/d6)|dx/36"" and «b
=(x/90) X (#x/96%)|9x/36|3, and thus, to the linear
order of &, we obtain t=er|r;'e,+e,+ez]r;'e, and Kb
=e7|ry’e,—ez|ry e+ (rg—er —&r|)ry’e,, where the primed
notations indicate the derivatives with respect to 6. Substi-
tuting t and «b above into Eq. (1) and expanding all terms in
power series of &, we see that (ry, 6,,z0) satisfy the zeroth-
order equations (2). To the first order of &, we get a set of
linearized equations for r; and z;. For further study of the
linear stability for bending waves, we express r(0,1)
=R (t)exp(inb), z,(0,1)=Z,(t)exp(in6) where n is an integer.
Accordingly, we have

R, —-n’Z,  2NZ,  ANzy(roR, + N2Z)
— = 5t + ) s (5)
A o G(rp,20) G*(rp.20)

4ro(roR) + N°20Z,)
Gz(ro,Zo)

Z, (n*-1)R, 2R, ©)
A re G(ro.20)

Here we have ignored the equation of #;, which is redundant.
In general, ry(1), zo(t), R,(f), and Z,(¢) can only be solved
numerically. The linear stability will depend on \, |n|, and
ro(0), by letting z,(0)=0 without loss of generality, and the
stability boundaries are shown in Fig. 2. If we focus on the
linear stability of a stationary ring, i.e., with ro(f)=re,,
70(t)=2¢q, and further assume R;(t)=aexp(-iwt), Z;(t)
=B exp(—iwt), the condition for nontrivial @ and B after sub-
stituting the expression above into Egs. (5) and (6) is given
by
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3A(n2=\?)

. p2

—iwR
det + R
ioR|

3A(n2-3) =0 @
From Eq. (7), we obtain the dispersion relation for the dis-
turbance, w),/(\)= +3AR[(n"*~N\?)(n2-3)]"2. Obviously,
wj,| is either purely real or purely imaginary. Real w),| corre-
sponds to a traveling wave with fixed amplitude such that the
unperturbed solution is stable. If w), is otherwise imaginary,
with a complex-conjugate pair, such that one of them implies
that the amplitude of the bending wave grows exponentially
in time, the unperturbed solution is unstable. It is easy to
show that when (1) 0= A< 1, w, is real for all [n| #1; (2)
I=A=2, w, real for all n; (3) N>2, w), is real for
[n]=1or|n ENY Hence, we conclude that the ring is abso-
lutely stable when 1=A=2, for which the BEC is purely
spherical to slightly oblate.
The normal mode of the stable wave is given by

(n)
|:r(1n)(9,t):| o |: 1 :|ei(n()—w|nl) (8)
<1 (Ha t) Vn
where ynziw‘n‘RleA(nz—)\z) is the ratio between a and B
for a given |n|. The /2 phase difference between a and
implies a helical wave along the circumference of the VR.
Since w), always comes in pairs with the same magnitude
but opposite sign, there must be two identical helical waves
traveling in opposite directions, and the result is a standing
wave rotating around the unperturbed core axis, which is
named a bending wave. For n=0, the rotation is precisely the
precession of a circular ring with ry(0) =r,, and the fre-
quency obtained from the inverse of Eq. (4) by setting
Fmin 5 Teq 5 Tmax 18 €xactly wy. The mode with [n]=1 is very
special. Since the ring is slightly shifted horizontally from its
original equilibrium position, it tilts due to the unbalanced
force and then wobbles around the xy plane. For |n| =2, the
bending wave looks like a petal.

The normal mode for the unstable wave is obtained by
letting wy,| in Eq. (8) be imaginary, when the bending wave,
unlike the stable one, is not propagating at all but just grows
exponentially in time. The growth of an unstable wave of
|n| =8 is shown in Fig. 3, where the mode is initially excited
and continues to grow for A= \65. As the disturbance con-
tinues to grow and the vortex ring continues to be stretched,
the petal shape becomes more pronounced as shown in Fig.
3(d). The vortex dynamics is catastrophically disrupted when
the circumference of the ring diverges. The growth of an
unstable wave of |n|=1 on a stationary ring is somewhat
different from that for other n’s and is shown in Fig. 4. In
this case, the excited VR wobbles at first as in the stable
mode, then gradually turns over, and is seriously distorted at
last. In most situations, however, the perturbation is gener-
ally random and only the unstable mode with the largest
growth rate will be selected to grow and dominate the insta-
bility. This most unstable mode is determined by solving
dwy,/dn=0, and we find that its wave number is closest to
(N2/2+3/2)"? for N\>2. For 0=\<1, the only unstable
mode is |n|=1 with a growth rate 3AR f(2 27\)12 which
reaches its maximum at A=0.
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FIG. 3. Growth of unstable waves of |n|=8 on a stationary
vortex ring at various T=Az, where A=165, R, =10. T=(a) 0, (b)
4.90, (c) 7.90, and (d) 11.82. (e) The circumference L of the vortex
ring as a function of time. (f) Development of the Fourier compo-
nents of r. In the long-time limit, the |n| =8 mode is most amplified,
yet its higher harmonics (|n| =16, 24, etc.) are also amplified.

The stability criterion 1 =X =2, where A=1,2 represents,
respectively, the stability boundary for the mode |n|=1,2,
indicates that a stationary VR is unstable in both cigar- and
pancake-shaded BECs. This can be understood as follows.
When the BEC is in a cigar shape, as observed in |n|=1
mode shown in Fig. 4, the wobbling VR is easier to overturn
and gets strongly distorted afterward. When the BEC is in a
pancake shape, we can take the |n| =8 mode shown in Fig. 3
as an example. The reason that A must be large enough so as
to destabilize this mode can be explained in the following

way. For a stationary ring, b and F are balanced vectors
lying on xy plane, where F=p,t X VV(x)/up(x) in Eq. (1).
When the VR is slightly perturbed, the bending wave rotates
around the unperturbed core axis owing to the small imbal-

ance between kb and F which almost remains on the xy
plane. Take any tip of the petal in Fig. 3 as an example. As

(a) (b)

(e)

L(TY/L(0)

FIG. 4. Growth of unstable waves of |n|=1 on a stationary
vortex ring at various T=Ar, with A=1/2, R, =10. T=(a) 0, (b)
200.42, (c) 236.20, and (d) 256.94. (e) The circumference L of the
vortex ring as a function of time. (f) Development of the Fourier
components of 7.
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the tip rotates more up from the xy plane, the component of
F in —f direction gets larger chiefly due to A%z, the z com-
ponent of VV. This —n component acts as a stretching force
that will enhance the petal shape if it is large enough. Natu-
rally an instability threshold exists for A, and A > 8 is needed
here to destabilize || =8 mode. As |n| gets larger, so does the
curvature «. Hence, this instability threshold also becomes
larger, and this explains the instability criterion A>>n? when
[n| =2. Unlike the stationary VR, the stability boundary for a
precessing VR can only be determined numerically, and the
result is shown in Fig. 2. We see that a precessing VR gen-
erally has a smaller instability threshold than the stationary
one. In addition, the larger the precession trajectory is, the

RAPID COMMUNICATIONS
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smaller the threshold becomes. This is because the instability
of a precessing VR always happens when it is expanding and
moving downward, where a larger trajectory would give a
smaller p(x), and thus increase the magnitude of F.

In summary, we have investigated the dynamics of a
single VR and its stability in an axisymmetric BEC in the TF
limit. Under axisymmetric initial conditions, the motion
equations for the VR are solved analytically. The bending-
wave instability follows to be studied and the stability
boundaries are computed for various combinations of \, n,
and ry(0) both numerically and analytically. The main con-
tribution of our studies suggests that the VR can be stable
only in a slightly oblate trap.
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