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Abstract
We propose a numerical scheme for obtaining the stationary vortex-ring
solutions of the Gross–Pitaevskii (GP) equation for an axisymmetrically
trapped Bose–Einstein condensate (BEC). The effective energy functional and
the associated GP equation are derived by assuming a trial phase profile for the
wavefunction that is subject to the condition of circulation quantization on
the rz plane. The wavefunction of the vortex ring is determined by solving
the ground state of the effective GP equation numerically. Application of
our method to the formation of a three-dimensional Skyrmion in a trapped
two-component BEC is demonstrated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Vortices are hydrodynamic phenomena characterized by the whirling motion of fluid around
a centre. A simple and intriguing vortical configuration is the vortex ring, which is a ring-
shaped mass of moving fluid rotating around an axis disposed in a circular form. A well-known
example is the smoke ring. In fact, vortex rings are frequently observed in a wide range of
scales in nature due to their fluid entrainment and slow dissipation. Owing to their compact and
persistent nature, vortex rings have been the subject of numerous experimental and theoretical
studies in classical fluid mechanics [1].

Other than in classical fluids, vortex rings can also be created in quantum fluids. Virtually,
vortex rings can be formed by imparting linear momentum to the fluid with axial symmetry.
Accordingly, quantized vortex rings with cores of angstrom size had been observed by
accelerating charged particles through a superfluid 4He [2]. Recently, due to the experimental
achievements of quantized vortices in trapped dilute alkali gases [3–5], the possibility of
realizing vortex rings in atomic Bose–Einstein condensates (BEC) has been intensively studied.
Several schemes aiming at this goal have been put forward [6–8]. In particular, Feder et al
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[8] have proposed using dynamical instabilities in the condensate to make a dark soliton
decay into vortex rings. Based on this idea, vortex rings in a trapped BEC were first realized
experimentally by Anderson et al [9].

In addition to the mechanism of creating vortex rings in atomic BEC, the dynamics of
vortex rings in a trapped BEC have also been studied by several authors [10–13]. In this work,
we present a numerical scheme that enables one to determine the vortex-ring solutions of the
Gross–Pitaevskii (GP) equation for an axisymmetrically trapped Bose–Einstein condensate.
Although this problem has been investigated previously, we revisit this subject from a
more fundamental perspective, such that no assumptions on the superfluid velocity field are
needed.

We start by noting that the kinematics of an infinitely thin circular quantized vortex ring
in a homogeneous superfluid is different from that in a trapped BEC. In the former, a vortex
ring translates with a constant velocity with its shape and size unchanged, while in the latter,
a vortex ring can move back and forth in the trapped condensate, with its size varying in
the locomotion [6, 13]. This peculiar feature is resulted from the competition between the
effect of the trapping potential and that of the self-induced velocity from the vortex ring’s own
local curvature. When these two effects are exactly cancelled out, the vortex ring becomes
immovable. As a consequence, this equilibrium vortex-ring state is treated as a stationary
solution of the GP equation. It is also important to note that the existence of a vortex ring leads
to the emergence of a toroidal-like hole in the condensate, around which the atoms rotate with
velocities subject to the condition of circulation quantization.

To obtain the vortex-ring solution for a condensate confined in an axially symmetric trap,
Guilleumas et al [11] have used the line-source approximation to describe the vorticity of
the vortex ring and hence to construct the energy functional of the vortex ring. In addition
to the main subject (the line-source approximation), the authors have incidentally proposed,
in the same paper, a numerical scheme for finding the vortex-ring solutions of GP equation.
In this secondary scheme, the authors proposed to include a constraining term ωφ〈L̂φ〉 in the
energy functional [11], where ωφ and L̂φ denote the angular velocity and angular momentum
about the azimuthal direction (the eφ axis in the cylindrical coordinate), respectively, and the
bracket 〈· · ·〉 indicates the average taken on the stationary configuration of the condensate.
The constraining energy, ωφ〈L̂φ〉, is introduced to account for the nucleation of a vortex on
the rz plane. As a consequence, a generalized GP equation can be obtained by minimizing
the energy functional, and the stationary solution can be determined numerically.

Although the scheme mentioned above permits a way to determine the vortex-ring
solutions of the GP equation without any presumptions, we find that the physical signification
of the term ωφ〈L̂φ〉 is ambiguous and further expositions on its availability are requested. In
[11], ωφ〈L̂φ〉 is considered as the energy needed to support the rotation of the condensate
around the core as viewed from the laboratory frame. The angular velocity ωφ is interpreted
as the Lagrange multiplier associated with the conservation of L̂φ and is treated as a constant.
The authors claimed that the vortex-ring solutions can be obtained by solving the GP equation
when ωφ is specified. We note that while L̂φ is a locally conserved quantity, the associated
Lagrange multiplier cannot be a constant everywhere. This suggests that ωφ is essentially
a function of position, and thus the constraining energy should be expressed by 〈ωφ(r)L̂φ〉
rather than ωφ〈L̂φ〉. Besides, from the irrotational nature of the superfluid, the magnitude
of the superfluid velocity at the position r falls off like |r − r0|−1 far from the vortex due
to constant circulation, where r0 is the position of the vortex core. This implies that the
angular velocity of the rotating superflow would fall off like |r − r0|−2 which is obviously
position dependent. All these ambiguities need to be clarified before constructing a correct
vortex-ring solution of the GP equation. In fact, it is the inherent constraint such as the
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circulation quantization, rather than a fictitious external force, that sets the coherent structure
of a quantized vortex. Therefore, in determining the vortex-ring states of a trapped BEC, it
is more crucial to resort to the intrinsic restriction on the wavefunction rather than to devise
the external constraint in the energy functional, and we address this issue in the present
work.

2. Theory

At extremely low temperatures, the dynamics of a trapped scalar Bose–Einstein condensate is
described by the time-dependent GP equation

ih̄
∂

∂t
�(r, t) =

[
−h̄2∇2

2m
+ Vext(r) + g|�(r, t)|2

]
�(r, t), (1)

where m is the mass of the atom and g = 4πh̄2a/m is the coupling strength (a is the s-wave
scattering length). The GP equation (equation (1)) takes a simple form in the case of stationary
solutions in which the condensate wavefunction, or the order parameter, evolves according to
the law �(r, t) = �(r) exp(−iµt/h̄), where µ is the chemical potential. Consequently, the
time-dependent GP equation reduces to[

−h̄2∇2

2m
+ Vext(r) + g|�(r)|2

]
�(r) = µ�(r). (2)

The condensate wavefunction �(r) is normalized by
∫ |�(r)|2 dr = N , where N is the total

number of atoms in the condensate. To be specific, we shall consider the axisymmetric
potential Vext(r) = (m/2)

(
ω2

⊥r2 + ω2
zz

2
)

in the cylindrical coordinates (r, φ, z), and define
the aspect ratio λ = ωz/ω⊥. In the Thomas–Fermi (TF) regime, Na/a⊥ � 1, the chemical
potential is fixed by µ = (h̄ω⊥/2)(15λNa/a⊥)2/5 [14], where lho = (h̄/mω⊥)1/2 is the
oscillator length in the radial direction. Accordingly, the spatial extensions of the atomic
cloud in the radial and axial directions are given by RTF = (

2µ/mω2
⊥
)1/2

, ZTF = RTF/λ.
In the quantum hydrodynamic approach, the wavefunction of the condensate can be

expressed in the Madelung form �(r) = √
ρ(r) exp[iS(r)], where ρ(r) and S(r) are

respectively the density and the phase of the condensate. It is easily verified that the velocity of
the superflow is determined by vs(r) = (h̄/m)∇S(r). However, vs(r) is not strictly irrotational
(∇ × vs = 0). In the presence of vortices, the circulation of vs is quantized in units of 2πh̄/m

[15]. Thus, ∮
�

vs · dl =κ
2πh̄

m
, (3)

where κ is an integer and � indicates a closed contour around the vortex line. Equation (3)
implies that S is a multi-valued function. For example, we can choose S(r) = κφ for a straight
vortex line residing in the z axis in an axisymmetric condensate. Suppose a stationary circular
vortex ring, which is axisymmetrically orientated, has formed in the trapped condensate.
Assuming that the core centre is located at (r, z) = (R,Z), we can then define the core-
centred polar coordinates, i.e.,

ζ(r, z) =
√

(r − R)2 + (z − Z)2 (4)

θ(r, z) = tan−1

(
z − Z

r − R

)
. (5)

Accordingly, we write �(r) = |�(ζ, θ)| exp[iS(ζ, θ)], and require that the superfluid velocity
associated with S(ζ, θ) satisfies equation (3) on the ζθ ‘plane’. To assure the multi-valued
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character of S(ζ, θ), the simplest and most natural choice is to letS(ζ, θ) = ±κθ , in
analogy with the case of a central vortex line on the z axis [16]. Specifically, we shall
choose S(ζ, θ) = −κθ , such that the condensate particles always swirl in a clockwise sense
when viewed in the direction of the azimuthal axis eφ (eφ is stipulated to point into the
page). Consequently, the phase function, −κθ , creates a swirling superflow described by
v(0)

s (ζ, θ) = v(0)
s (ζ ) eθ , where v(0)

s (ζ ) is a function of ζ only and v(0)
s (ζ ) ∼ 1/ζ provided

that ζ is much larger than ξ , the healing length of the condensate. Yet in the current
problem, the function −κθ does not faithfully describe the behaviour of the superflow
near the symmetric axis. For an axisymmetrically oriented vortex ring, the radial velocity
component of the superflow must vanish on the z axis so that the axial symmetry of the
flow pattern can be retained. The velocity field constituted by the term −κθ thus needs to
be modified on the z axis. To overcome this shortcoming, we introduce a compensation
velocity field δvs = (h̄/m)∇S1(ζ, θ) such that the actual velocity is given by vs = v(0)

s + δvs,
and correspondingly, S(ζ, θ) = S0(θ) + S1(ζ, θ), whereS0(θ) = −κθ and S1(ζ, θ) is a real,
continuous and single-valued function. Since the vortical properties of the superfluid is chiefly
determined by the velocity profile v(0)

s , we expect that δvs produces merely local corrections to
v(0)

s and leaves the global circulation around the vortex core unchanged, that is,
∮

�
δvs ·dl = 0.

The order parameter is then expressed in the following form:

�(r, z) = ψ(r, z) exp[−iκθ(r, z)], (6)

where ψ(r, z) = |�(r)| exp[iS1(r, z)]. Substituting equation (6) into equation (1) and scaling
the lengths and energies in units of a⊥, h̄ω⊥, respectively, we obtain the GP equation for
ψ(r, z):{

−1

2

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)
+

r2 + λ2z2

2
+ g |ψ |2 +

κ2

2ζ 2

− iκ

ζ 2

[
(z − Z)

∂

∂r
− (r − R)

∂

∂z
+

z − Z

2r

]}
ψ = µ′ψ. (7)

Here, µ′ is the chemical potential in the presence of a vortex ring.
It is interesting to point out that the term enclosed in the square bracket in equation (7) is

exactly the angular momentum operator L̂φ introduced in [11], i.e.,

L̂φ = eφ · L̂ + L̂ · eφ

2

= eφ · (r − r0) × p̂ + (r − r0) × p̂ · eφ

2

= 1

i

[
(z − Z)

(
∂

∂r
+

1

2r

)
− (r − R)

∂

∂z

]
(8)

where p̂ = −i∇ is the linear momentum operator and r0 = Rer + Zez is the position
vector of the core centre3. Furthermore, by the dimensional consideration, it is evident that
ω̃φ(r, z) = κ/ζ 2(r, z) is equivalent to the local angular velocity. Thus equation (7) can be
written as[

−1

2

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)
+

r2 + λ2z2

2
+ g |ψ |2 +

κ2

2ζ 2
+ ω̃φL̂φ

]
ψ = µ′ψ. (9)

3 In [11] the angular momentum was given by L̂φ = [eφ · r × p̂ + r × p̂ · eφ ]/2, which is inexact because the rotation
centre is at r0 rather than at the origin of the trap.
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The last equation can be derived from the stationary condition δE′[ψ,ψ∗]/δψ∗ = 0, where
E′[ψ,ψ∗] = E[ψ,ψ∗] − µ′N with the energy functional E[ψ,ψ∗] given by

E[ψ,ψ∗]=
∫

dr
[

1

2
|∇ψ |2 +

r2 + λ2z2

2
|ψ |2 +

κ2

2ζ 2
|ψ |2 +

g

2
|ψ |4

]
+
∫

dr ψ∗ω̃φL̂φψ. (10)

Comparing our derivation to the expression of the energy functional given in [11], namely,

E[�,�∗] =
∫

dr
[

1

2
|∇�|2 +

r2 + λ2z2

2
|�|2 +

g

2
|�|4

]
+ ωφ

∫
dr �∗L̂φ�, (11)

we see that the term 〈ω̃φL̂φ〉 appears in equation (10), where the average is taken over
the partitioned wavefunction ψ(r, z) rather than the total wavefunction �(r, z). Moreover,
the centrifugal potential, κ2/2ζ 2, is included in our expression. We therefore expect that the
desired wavefunction vanishes spontaneously at the core centre for κ 
= 0, since κ2/2ζ 2

diverges at (r, z) = (R,Z). This ensures the formation of a toroidal-like empty region
inside the condensate. Finally, it is important to note that although the introduction of L̂φ

seemingly implies divergence on the z axis (r = 0), the wavefunction ψ does not necessarily
vanish there. Recalling that the operator ∇2 contains the term (1/r)∂/∂r , thus if ψ satisfies
the equation ∂ψ/∂r + iκζ−2(z − Z)ψ = 0 at r = 0, the divergence can be removed
without assuming ψ = 0 on the z axis. The required condition for the above equation to
hold is that ψ must be a complex function, and this is verified in the following numerical
computations.

Before proceeding to solve the equation numerically, here we remark briefly on the
difference between the present scheme and the previous one. In the preceding studies, a
particular irrotational velocity profile must be presumed (see [10, equation (17)] and [11,
equation (11)]) in order to determine the vortex-ring solution. The specified velocity profile
yields a distribution of rotational energy, and is treated as an additional external potential. The
vortex-ring solution is then obtained by solving the effective GP equation with the method
of imaginary time propagation. Nevertheless, the vortex-ring solution so obtained is not
exact in general, as the calculated superfluid velocity profile, which is obtained by taking the
gradient of the phase of the total wavefunction, is not always consistent with the prescribed
one. Besides, treating the rotational energy as an external potential may cause an overestimate
in the vortex nucleation energy (see the discussions in [11]). We see that these difficulties can
be completely avoided in our scheme. Although the assumption of the trial phase function,
S0, seemingly implies a velocity field, this prescribed velocity profile is not complete as S0

represents only a partial phase of the total wavefunction and the remaining phase inscribed in
ψ is yet to be determined by solving equation (9). Therefore no inconsistency between the
true velocity profile and the trial one given by S0 will be brought about. In addition, since
the effective GP equation, equation (9), is derived by substituting the separated wavefunction
equation (6) into the usual GP equation, these two equations are equivalent representations
and thus no misestimate of vortex energy will be introduced. As a result, the consistency of
the vortex-ring solution is ensured in the present scheme.

The effective GP equation (equation (9)), that can be obtained from the extremization
of equation (10) with respect to ψ , plays a central role in locating the vortex-ring solution.
Since the vortex rings are dynamically stable in the absence of dissipation [10], we expect that
the lowest energy solution of equation (9) will minimize the energy functional. This can be
further established if we rewrite equation (9) in the form[−1

2
(∇ − iA)2 +

r2 + λ2z2

2
+ g |ψ |2

]
ψ = µ′ψ, (12)
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Figure 1. (a) The nucleation energy of the vortex ring as a function of R for various values of
β = |Z|/RTF in a spherical condensate with RTF = 10. (b) The corresponding energy surface
of figure 2(a), in which the contours of constant energy are plotted per 0.02 energy unit between
0.171 and 0.

where the gauge potential A is given by A = −(κ/ζ ) eθ . The last equation is familiar as
it describes the static vortex state in a superfluid. We therefore consider the lowest energy
solution of equation (9) as the corresponding vortex-ring solution. The major difference is
that this lowest energy solution ψ can only be complex to account for the marginal effects on
the velocity field near the z axis.

3. Results and discussion

Since ψ(r, z) satisfies equation (9) and gives the lowest energy eigenvalue, it can be solved
numerically by the method of imaginary time propagation on a discretized (r, z) mesh. Now,
with specified values for R and Z, the wavefunction ψR,Z(r, z) minimizing the energy functional
E[ψ,ψ∗] can be determined. Obviously, the corresponding energy value E depends on R and
Z. In figure 1(a), the nucleation energy of the vortex ring, Enucl(R,Z) = E(R,Z) − E0,
as a function of R for various values of Z is shown for a spherical condensate with κ = 1
and RTF = 10, where E0 is the ground state energy of the condensate in the absence of
vortex ring. Basically, the energy of the vortex ring depends on the condensate density ρ,
the ring radius R and the vortex-core size ξ , as revealed by the theoretical studies in [17],
in which E = (2π2h̄2/m)ρR ln(1.59R/ξ) is concluded for a large vortex ring (R � ξ) in
a homogeneous condensate. We note that R, ρ and ξ in the last expression are independent
parameters, and the energy of the vortex ring is an increasing function of R and ρ but
a decreasing one of ξ . Although the situation becomes more complicated for a trapped
condensate, in which the atomic density varies with position and hence ρ and ξ are dependent
on R, the above energy formula may still provide a useful clue to explore the behaviour of
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Figure 2. (a) The grey-scale density plot of a singly quantized vortex ring (κ = 1) in a spherical
condensate with RTF = 10. The tiny black dots (the vortex cores) reveal the cross-sections of a
toroidal-hole in the condensate. (b) The phase variation of the condensate wavefunction around
the core of the vortex ring. (c) The radial part of the normalized density profile N−1|�|2 of the
condensate at z = 0 in the presence of the vortex ring. (d) The corresponding current density field
j(r, z) of the vortex-ring state. The length of the arrow is proportional to the magnitude of j(r, z)
(in arbitrary units).

the energy curves in figure 1(a). As most atoms are concentrated in the central region of the
trapped cloud, the atomic density thereabouts varies slowly and thus the energy increases with
increasing R in the inner part of the condensate. In contrast, the energy of the vortex ring
decreases with increasing R in the outer part of the condensate, as the atomic density decreases
rapidly and the vortex core becomes wider in that region. This explains why the energy curves
in figure 1(a) all have the shape of a cap. Furthermore, it has already been pointed out in
previous studies [10, 11, 13] that vortex ring generally precesses inside the condensate unless
a particular ring radius is chosen. Therefore the stationary vortex-ring state corresponds to
an unstable equilibrium of motion achieved when E(R,Z) is maximal. For the vortex ring
in figure 1(a), the maximum of E(R,Z) or Enucl(R,Z) occurs at R = 0.550RTF, Z = 0.
Here Z = 0 is expected as the condensate possesses the reflection symmetry about the xy

plane. The energy contours of Enucl(R,Z) are shown in figure 1(b) at equal spacing. Note that
Enucl(R,Z) drops rapidly to a very low value on the outer edge of the atomic cloud, suggesting
that the vortex ring is not stable thereabout. This might be understood by the idea that the
density in that region is not large enough to sustain a vortex.

From figure 2(a), it is evident that a thin toroidal-like hole is formed in the condensate.
The phase variation of the condensate wavefunction around the vortex core is shown in
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Figure 3. (a) The phase S1 as a function of r and z. (b) The velocity field δvs as a function of r
and z, where the length of the arrow is proportional to the magnitude of δvs (in arbitrary units).
In the inset, the velocity field in the vicinity of the vortex core (marked by the cross) is shown
for |r/RTF − 0.55| � 0.01 and |z/ZTF| � 0.01. In order to be recognizable, the velocity vector
at the location of the core is not plotted, as its magnitude overwhelms those at the neighbouring
locations.

figure 2(b). Apparently, a 2π phase jump occurs around the singularity residing right at the
core centre. Moreover, by direct numerical integration for various closed contours enclosing
the core, we have also verified that, within the numerical accuracy, the value of the circulation
integral equation (3) is 2π (in oscillator units) which is exactly one quantum of circulation.
The corresponding radial density profile of the vortex ring on the xy plane is shown in
figure 2(c). In figure 2(d), the current field j(r) = (�∗∇� − �∇�∗)/2i on the rz plane
is shown, in which the rotational behaviour of the flow around the core is well captured.
The compensation phase S1 and the velocity δvs for the vortex ring in figure 1 are plotted in
figures 3(a) and 3(b) respectively as functions of r and z. We find that S1(r, z) is an odd
function of z, i.e., S1(r,−z) = −S1(r, z) whose magnitude is generally small and varies
slowly in the region of the z axis. In the vicinity of the z axis, the rapid variation of S1(r, z)

gives rise to a shear layer in which the appreciable inward (outward) radial components of δvs

along the positive (negative) z axis force the velocity strictly z directional right at the z axis
due to axial symmetry as shown in figure 3(b). Note that there is a small dip-bump structure
around the core as shown in figure 3(a), suggesting that the cross-section of the vortex core is
non-circular. Further numerical computations reveal that this non-circular character is caused
by the density gradient across the vortex core (from the inner side to the outer side of the
core centre). Apparently, this non-circular character becomes more noticeable for a smaller
condensate, but disappears when the size of the condensate is sufficiently large.

It is important to point out that the above results are consistent with those obtained
previously in [10, 13], in which an infinitely thin vortex ring resting on the xy plane will have
a radius of R = RTF/

√
3 = 0.577RTF irrespective of the aspect ratio λ. In figure 4(a), the

radii of the stationary vortex ring with various RTF are illustrated. We see that with increasing
RTF, R increases monotonically yet the ratio R/RTF converges to a limiting value rather slowly
in TF regime (figure 4(b)). Extrapolation on the curve of ln(R/RTF) versus 1/RTF suggests
that R/RTF → 0.582 when RTF → ∞. This estimated limiting value of R/RTF agrees with
1/

√
3 with an relative error being less than 1%.
In addition to the case of a single-vortex ring, the present scheme can be employed to

construct the equilibrium state of a more complicated vortical configuration with a prescribed
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Figure 4. (a) The equilibrium ring radius R as a function of Na for a spherical condensate. (b) The
ratio R/RTF, as a function of Na for a spherical condensate.
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Figure 5. (a) The grey-scale density plot of the vortex complex consisting of a vortex ring (κ = 1)

lying on the xy plane with a single-straight vortex line (n = 1) residing in the z axis. (b) The radial
part of the normalized density profile N−1|�|2 at z = 0 of the vortex complex in figure 5(a).

�(r). For example, by choosing �(r) = ψ(r, z) exp(inφ) exp[−iκθ(r, z)], we obtain the
wavefunction of a vortex complex consisting of a vortex ring lying on the xy plane with the
ring axis coinciding with the z axis and a straight vortex line residing right at the z axis.
The corresponding density profiles of such a composite structure with κ = n = 1 are shown
in figure 5.

This vortex complex can be further applied in the phase separation regime of a two-
component BEC to mimic the structure of a topological defect known as the Skyrmion. In this
theoretical model, one component of the binary mixture is concentrated in the core region of
the vortex ring formed by the other, and flows azimuthally to produce a vortex line on the z

axis [7]. Let �i(i = 1, 2) be the wavefunction for the ith species of condensate in the mixture.
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(a)

(b)

Figure 6. (a) The 3D density profile of the stable trapped Skyrmion in a two-component BEC: The
central torus is the isosurface of the line component (red). The isosurface of the ring component
(blue) is shown in the positive x axis. (b) The 1D density profiles: The dashed- and solid lines
indicate the normalized densities for the line- and ring components respectively. The parameters
in this simulation are identical to those of figure 1 in [18]: N1 = N2 = 4.5 × 106 denote the
numbers of atoms in species 1 and 2 respectively; λ = 1, ω⊥ = 2π × 7.8 Hz and lho = 3.86 µm;
a11 = 5.67 nm, a22 = 5.34 nm are the intraspecies scattering lengths and a12 = 5.54 nm is the
interspecies scattering length.

Accordingly, the energy functional of the systems is described by

E[�1, �2] =
∫

dr
(
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2
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1

2
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1

2
g11|�1|4 +

1

2
g22|�2|4 + g12|�1|2|�2|2

)
. (13)

Here, for simplicity, we have assumed that all atoms have the same mass, and the two
trapping potentials are overlapped perfectly, i.e., V1 = V2 = (r2 + λ2z2)/2. To generate
the energetically stable Skyrmion configuration, we let �1 = ψ1(r, z) exp[−iθ(r, z)] and
�2 = ψ2(r, z) exp(iφ). As a consequence, the corresponding Skyrmion configuration of
winding number W = 1 is shown in figure 6 with the same parameters adopted in [18,
figure 1]. Obviously, the results in figure 6 coincide nicely with those previous studies, and
this suggests that our scheme may provide a simpler way to generate the wavefunction of a
3D Skyrmion in a two-component BEC.

It should be pointed out that due to the ansatz and its specific symmetry, the present
technique does not provide sufficient information about the dynamical or energetic stability
of the stationary solutions. However, this problem is particularly relevant in the case of the
Skyrmion solutions. A more detailed investigation on the Skyrmion solution and its instability
mechanisms can be found in [19].

4. Conclusions

In summary, we have developed a numerical scheme for obtaining the stationary vortex-ring
state for an axisymmetrically trapped Bose–Einstein condensate. We derive the effective
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energy functional and the associated GP equation for the condensate in the presence of a
stationary vortex ring by assuming a particular phase profile for the wavefunction subject
to the quantization of circulation on the rz plane. The order parameter corresponding to
the equilibrium vortex-ring configuration is determined by locating the ground state of the
effective GP equation which yields the maximal nucleation energy among all possible locations
of the pinned-down vortex ring. This method also provides a simpler way to generate certain
complicated vortical configurations such as the 3D Skyrmion in the trapped two-component
BEC as shown above.

The major difference between our scheme and others is that, instead of introducing
a particular velocity profile as an external field, we convert the condition of circulation
quantization into effective constraining potentials and determine the wavefunction of the
condensate via variational means. Our method thus avoids the difficulty of specifying the
authentic velocity field in an inhomogeneous superfluid. This advantage may provide a
feasible way to study the dynamics of multiple vortex rings in a trapped condensate, in which
the velocity profile may develop complicated spatiotemporal behaviour while the vortex rings
are moving and interacting with each other. This would involve in deriving a set of coupled
equations of motion for the order parameter and the locations of different core centres, and
will be the focus of our future work.
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