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Equilibrium vortex formation in ultrarapidly rotating two-component Bose-Einstein condensates

C.-H. Hsueh,1 T.-L. Horng,2 S.-C. Gou,3 and W. C. Wu1

1Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
2Department of Applied Mathematics, Feng Chia University, Taichung 40724, Taiwan

3Department of Physics, National Changhua University of Education, Changhua 50058, Taiwan
(Received 22 April 2011; published 5 August 2011)

Equilibrium vortex formation in rotating binary Bose gases with a rotating frequency higher than the harmonic
trapping frequency is investigated theoretically. We consider the system being evaporatively cooled to form
condensates and a combined numerical scheme is applied to ensure the binary system being in an authentic
equilibrium state. To keep the system stable against the large centrifugal force of ultrafast rotation, a quartic
trapping potential is added to the existing harmonic part. Using the Thomas-Fermi approximation, a critical
rotating frequency �c is derived, which characterizes the structure with or without a central density hole. Vortex
structures are studied in detail with rotation frequency both above and below �c and with respect to the miscible,
symmetrically separated, and asymmetrically separated phases in their nonrotating ground-state counterparts.
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I. INTRODUCTION

Quantum coherence has enabled intriguing phenomena,
such as quantized vorticity, in Bose-Einstein condensates
(BECs). When a trapped condensate is driven to rotate, singly
quantized vortices form. In lower rotations, only one or a
few vortices will be present at equilibrium [1]. Faster rotation
can generate more vortices which are eventually condensed
into a lattice [2–5]. Vorticity in a single-component Bose-
Einstein Condensate has indeed been observed in a variety of
experiments. On the other hand, since the first experiment of
two coexisting condensates of two different hyperfine states of
87Rb [6] was realized, BECs in mixtures of trapped quantum
gases provide a unique opportunity to study the miscibility
of interpenetrating quantum fluid. Several theoretical articles
about binary-mixture condensates have expounded that both
the interspecies and the intraspecies interactions play an
important role in determining the density patterns and phase
separation of the condensates [7–12] . In contrast to the
Abrikosov vortex-lattice state of a scalar BEC, the vortex states
of binary-mixture BECs have various exotic structures due to
the variety of interactions [13–15].

Rotating Bose condensates are usually confined in a
harmonic trap with cylindrical symmetry around the rotation
axis (say, z direction). In these typical cases, there are two
limiting regimes depending on the relative size of the rotating
frequency �0 and the trapping frequency ω in the xy plane.
When �0 > ω, the system will become unstable due to a
strong centrifugal force. In order to analyze the regime of
ultrafast rotations with �0 > ω, one approach is to add a
quartic part to the harmonic potential. In this type of system, the
trapping force will be always greater than the centrifugal force
and consequently the regime �0 > ω can be fully explored
[16–23]. The current paper attempts to study the equilibrium
vortex states of ultrafast-rotating binary condensates confined
in a harmonic-plus-quartic potential.

In a single-component ultrarapidly rotating condensate
trapped in a harmonic-plus-quartic potential, the system can
experience a Mexican-hat-shape effective potential when
�0 > ω. Depending on how �0 is larger than ω, the system
can be roughly separated into two regimes: a condensate

with or without the central density hole. More exactly, it has
been shown in the literature that there exist three distinct
phases for the fast-rotating scalar condensate confined in
a harmonic-plus-quartic potential. One is the vortex lattice
without a hole (VL), the second is the vortex lattice with a hole
(VLH), and the third is the giant vortex state (GV) [19,22].
It is interesting to see how the interspecies and intraspecies
interactions play the role in the binary-mixture condensates
under fast rotation and, in particular, how the above-mentioned
phases manifest in these systems.

Due to the complexity of the interactions in the binary
system, a standard imaginary-time propagating method for
solving the Gross-Pitaevskii equation (GPE) that converges
the results for the true equilibrium states may not be easy to
find. It has been shown in Ref. [24] that a GPE with a phe-
nomenological damping term can provide efficient numerical
machinery for finding the eigenstates of the time-independent
GPE. Moreover, a theory called the stochastic Gross-Pitaevskii
equation (SGPE) [25–29], which includes the effects of both
the damping term and the fluctuations due to the thermal
clouds, has been demonstrated to be an efficient way to
study the single-component BEC system. It is also anticipated
that the SGPE is an alternatively efficient method for studying
the dynamic and equilibrium properties of a multicomponent
system near absolute zero.

The paper is organized as follows. In Sec. II, we introduce
the theory for studying the equilibrium vortex states of a
binary-mixture BEC system. To investigate the regime of
ultrafast rotation, the system is trapped under a harmonic-plus-
quartic potential. Section III is devoted to a detailed discussion
of the vortex structures for fast-rotating binary-mixture BECs.
A critical rotation frequency �c is derived and both � < �c

and � > �c regimes are studied. It is shown explicitly that
vortex structures of the system do manifest the ground states of
their nonrotating counterparts. Section IV is a brief conclusion.

II. METHODOLOGY

We consider rapidly rotating two-component pancake-
shape BECs that are parallel to the xy plane and in a cylin-
drically symmetric potential. Assuming that the excitation
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in the z direction is suppressed, the system can be treated
approximately by a two-dimensional theory. In the mean-field
approximation, such a quasi-two-component BEC system in
a corotating frame with a rotating frequency �0 around the z

axis can be described by the time-dependent coupled GPEs:

ih̄
∂�j

∂t
= (

L(j )
GP − μj

)
�j

=
(
Hj +

∑
k=1,2

Ujk |�k|2 − μj

)
�j, (1)

where component j = 1,2, L(j )
GP is the GP Hamiltonian, μj

is the chemical potential, and �j is the macroscopic wave
function normalized under Nj = ∫ |�j |2dxdy with Nj being
the particle number. Hj ≡ −h̄2∇2/(2mj ) + Vj − �0Lz is the
single-particle Hamiltonian with mj being the atomic mass,
Vj = mjω

2
j r

2/2 + uj r
4/4 is the trapping potential in polar

coordinates (r,φ), ωj is the harmonic trapping frequency, uj is
the strength of the quartic potential, and Lz = −ih̄∂/∂φ is the
z component angular momentum operator. The interaction pa-
rameter Ujk = 2πh̄2ãjk(m−1

j + m−1
k ), with ãjk(>0) being the

effective two-dimensional s-wave scattering length between
atoms in components j and k.

As mentioned before, the SGPE approach, which includes
both the damping and the fluctuations due to thermal clouds,
may be an efficient numerical approach by which to obtain
accurate ground states of a given time-independent GPE
[24–29]. Here we apply a similar SGPE approach to study
the vortex states of an ultrafast-rotating two-component BEC
system. The coupled SGPEs for the present binary system can
be expressed as

ih̄
∂�j

∂t
= (1 − iγ )

(
L(j )

GP − μj

)
�j + ηγ , (2)

where ηγ = ηγ (r,t) is a complex Gaussian noise con-
sidered to arise due to the contact with the thermal
modes. The correlation function associated with the noise
is given by 〈η∗

γ (r,t) ηγ (r′,t ′)〉 = 2h̄kBT γ δ (r − r′) δ (t − t ′).
The strength of the noise, and hence the damping, is thus
proportional to γ . In principle, γ can be calculated ab initio

in terms of the Keldysh self-energy [25,26]. However, as we
are interested only in the properties at equilibrium, we may
approximate it as a spatial and temporal constant. Throughout
this paper, γ is reasonably taken to be a small number, 0.01.
The temperature is set to be 1 nK which is about 10−2 or less
of the critical temperature of a typical BEC system.

It should be emphasized that Eq. (2) is a somewhat
heuristic phenomenological version of coupled SGPEs, since
any coupling between the thermal clouds of two different
components is not considered explicitly. While this coupling
may play some important role in the dynamics, it is expected
that it has only a minor effect on the equilibrium properties.

To reduce the number of parameters, we assume that
m1 = m2 ≡ m, ω1 = ω2 ≡ ω, u1 = u2 ≡ u, and N1 = N2 ≡
N . Moreover, for convenience, the computations are carried
out in oscillator units. That is, the length, time, and energy
are scaled, respectively, in units of

√
h̄/mω , 1/ω, and h̄ω.

As a consequence, the coupled SGPEs (2) take the following
dimensionless forms:

i
∂ψj

∂t
= (1 − iγ )

(
−∇2

2
+ r2

2
+ λr4

4
+ i�

∂

∂φ

+
∑
k=1,2

gjk|ψk|2 − μ̃j

)
ψj + η̃γ . (3)

Here we have redefined the normalized wave function
ψj ≡ √

h̄/(mωN )�j , the strength of the quartic trap λ ≡
uh̄/(m2ω3), the interaction constants between atoms gjk ≡
4πNãjk , the chemical potential μ̃j ≡ μj/h̄ω, and the noise
η̃γ ≡ ηγ /h̄ω. In addition, the rotation rate � ≡ �0/ω. The
rotation rate and the quartic trap strength are fixed at � = 2.5
and λ = 1 in our calculation throughout this paper.

In our calculations, the vortex configurations (and the cor-
responding chemical potentials) are first obtained by solving
the norm-preserving imaginary-time propagation of the time-
dependent coupled GPEs (1) starting from an arbitrary trial
wave function. The propagation continues until the fluctuation
in the norm of the wave function becomes smaller than 10−5.
To check whether the vortex configurations obtained and
converged by the coupled GPEs in imaginary time are indeed at
equilibrium, they are substituted into and treated as the initial
states of the coupled SGPEs (2). If the initial state was not an
equilibrium state, it kept propagating until the damping term
vanishing.

Moreover, we have used the method of lines with spatial dis-
cretization by the Fourier pseudospectral method to compute
Eqs. (1) and (2) ) [or Eq. (3)]. The time integration in Eq. (1)
is done by the adaptive Runge-Kutta method of orders 2 and 3
(RK23), which is more time efficient due to an adjustable time
step. However, the fourth-order Runge-Kutta method (RK4) is
used for Eq. (2) [or Eq. (3)], since the thermal noise term ηγ

is proportional to 1/
√

dt and is better computed with a fixed
time step.

III. RESULTS AND DISCUSSIONS

A. Nonrotating ground states

Solving the nonrotating (� = 0) time-dependent coupled
GPEs (1) using the imaginary-time propagating method, we
have obtained three distinct phases for the ground states of
the binary-mixture condensates. Figure 1 shows the phase
diagram of the binary-mixture condensates in terms of the
relative interaction strengths, α2 ≡ ã22/ã11 and α12 ≡ ã12/ã11.
By symmetry, it is sufficient to consider α2 � 1 only. The
nonrotating binary-mixture condensates are phase miscible in
region I and phase separated in regions II (asymmetric) and
III (symmetric). As shown in Fig. 1, the boundary between
phases I and III is linear with α12 = α2. This linear boundary
is obtained by jointing nine points of α2 = 0.2 to 1 (spaced by
0.1) together with their corresponding α12 determined with
precision less than 0.01. The quartic trap (λ) has only a
minimal effect on the boundary between the miscible and the
symmetric separated phases. On the contrary, the boundary
between phases II and III is quite λ dependent. Similarly
this phase boundary is obtained by jointing nine points:
from α2 = 0.4 to 1 (spaced by 0.1) and their corresponding
α12 determined with precision less than 0.01. For larger λ,
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FIG. 1. (Color online) Phase diagram of the nonrotating binary-
mixture condensates confined in a harmonic-plus-quartic trap in terms
of the relative interaction strengths, α2 ≡ ã22/ã11 and α12 ≡ ã12/ã11.
The quartic trap strength is fixed at λ = 1. Regions I, II, and III
correspond to miscible, asymmetrically separated, and symmetrically
separated phases, respectively.

due to a relatively stronger confinement which increases the
interspecies interaction energy, the two components tend to
separate on two sides. Consequently the area of phase II
in Fig. 1 will expand as λ increases. This allows a larger
space for studying the asymmetric phase-separated regime for
fast-rotating binary-mixture condensates. The two boundaries
intersect at (α2,α12) = (1,1) which is called the isotropic point.
We study the vortex structures in all three phases and in
particular at the isotropic point.

B. Critical rotation rate �c

Before discussing the equilibrium vortex formations of
fast-rotating binary-mixture condensates, it is useful to identify
a critical rotation rate �c which characterizes the states of
ultrafast-rotating condensates trapped in a harmonic-plus-
quartic potential. In the one-component system, there is only
one interaction constant g ≡ 4πNã, and when g 	 1 the
system is in the so-called Thomas-Fermi (TF) regime. As
the single-particle GP Hamiltonian under rotation can be
written as LGP = −1/2(∇ − i� × r)2 + Veff(r) + g|ψ |2 with
the effective trapping potential Veff(r) = V (r) − �2r2/2 =
(1 − �2)r2/2 + λr4/4, the TF density profile can be approxi-
mated by

|ψTF|2 = μTF − Veff

g
= 1

g

[
μTF +

(
�2 − 1

)
r2

2
− λr4

4

]
.

(4)
For � < 1, the TF density is maximum at the cen-
ter (r = 0) and vanishes (cutoff) at r = R ≡ [(�2 − 1) +√

4λμTF + (�2 − 1)2]/λ, where μTF is defined positively. In
contrast for � > 1, it can be predicted from Eq. (4) that there
could exist two radii where the TF density vanishes. They are

R2
≷ = (�2 − 1) ±

√
4λμTF + (�2 − 1)2

λ
, (5)

where R> (plus sign) corresponds to the outer radius, while
R< (minus sign) corresponds to the inner radius. Moreover,
for both R> and R< to be well defined (coexist), μTF needs
to be negative. In this case, the spatial extension of the

atomic cloud is confined (cutoff) at R< � r � R>. By solv-
ing

∫ R>

R<
2πrdr |ψTF|2 = 1, the negative chemical potential

was found to be μTF = (3g
√

λ/π )2/3/4 − (�2 − 1)2/(4λ).
Accordingly, the system can be separated into two states
demarcated by a critical rotating frequency �c corresponding
to R<(�c) = 0 [or μTF(�c) = 0]. At sufficiently high rotating
frequencies such that � > �c and hence R< > 0, a central
hole will appear in the condensates, i.e., in the VLH state
[19,22]. In contrast for � < �c, a vortex lattice without a
central hole regime (the VL state) will appear. It is found that
�2

c = 1 + (3λ2g/π )1/3, which is dependent of the interaction
constant g and the quartic trap strength λ.

For the present binary-mixture condensates, the critical
rotating frequency �c, which characterizes the transition
between the VL and the VLH states, can be qualitatively
determined by the larger of g11 and g22. As mentioned before,
in this paper we consider only the cases g11 � g22 (i.e.,
α2 � 1). Consequently,

�2
c ≡ 1 + (3λ2g11/π )

1
3 . (6)

When � < �c, the rotating binary system will be in the
VL state, while when � > �c, the system will be in the
VLH state. In the following subsection, two distinct cases
of g11 = 1300 and g11 = 55 are studied. The former corre-
sponds to the critical rotating frequency �c = 3.43 and hence
� = 2.5 < �c, while the latter corresponds to �c = 2.18 and
hence � > �c.

C. Vortex states

1. VL state with � < �c

We first consider the vortex structures with rotation fre-
quency below the critical rotating frequency, � < �c. Figure 2
shows the equilibrium vortex structures of two-component
condensates confined in a harmonic-plus-quartic potential with
g11 = g22 = 1300 (α2 = 1) and α12 = 0.5, 1, and 1.3 (from the
top to the bottom) respectively. All three cases belong to the VL
regime for which one is able to conclude the following. (i) For
a phase-miscible mixture, the equilibrium state is composed of
regular vortex lattices which form roughly a square lattice at
α12 = 0.5 rather than what is expected to be a triangular lattice
when α12 → 0 [30] . (ii) At the isotropic point (α2 = α12 = 1),
a honeycomb lattice is formed for one component, while
vortices in the other component form a vortex-pair lattice (the
vortex of every pair has the same circulation). (iii) Stationary
vortex sheets are formed for an asymmetric phase-separated
mixture. Our results in Fig. 2 are intended to be compared
to those shown in Figs. 2(a), 3, and 4 of Ref. [14]. With our
results, we have been able to verify that the vortex structure
shown in Fig. 3(b) of Ref. [14] corresponds to an authentic
equilibrium state, while the one shown in Fig. 3(a) of Ref. [14]
corresponds to a transition state.

Figure 3 shows the vortex structures of the mixtures with
g11 = 1300, α2 = 0.5, and α12 = 0.8. For these parameters,
the system is still in the VL regime with � < �c. In this
case, the system has a ball-and-shell nonrotating ground state
(phase III) and in the vortex state it forms an interlocking
oniony vortex-sheet structure.

023610-3



C.-H. HSUEH, T.-L. HORNG, S.-C. GOU, AND W. C. WU PHYSICAL REVIEW A 84, 023610 (2011)

FIG. 2. (Color online) Vortex structures of fast-rotating binary-
mixture condensates confined in a harmonic-plus-quartic potential in
the VL state. The interaction constants g11 = g22 = 1300 (α2 = 1),
the rotation rate � = 2.5, and the quartic trap strength λ = 1 for
all frames. From the top to the bottom rows, α12 = 0.7, 1, and 1.3,
respectively. x and y axes are in units of

√
h̄/mω.

2. VLH state with � > �c

The results in the VLH regime with � > �c are considered
next. In this subsection, to see more clearly the vortex physics,
we show the results of both the density profile nj (x,y) =
|ψj (x,y)|2 and the phase profile given by

Sj (x,y) = arctan

[
Imψj (x,y)

Reψj (x,y)

]
. (7)

In the phase profile, the end point of the boundary between a
π phase line and a −π phase line will correspond to a vortex.

FIG. 3. (Color online) Vortex structures of components 1 (left
panel) and 2 (right panel) in fast-rotating binary-mixture condensates
in the VL state. Here g11 = 1300, α2 = 0.5, α12 = 0.8, λ = 1, and
� = 2.5. x and y axes are in units of

√
h̄/mω.

In addition, the circulation and the number of vortices can also
be counted directly. Figure 4(a) shows the vortex structure and
the corresponding phase profile of fast-rotating binary-mixture
condensates with g11 = 55, α2 = 1, and α12 = 0.5. The ground
state of the corresponding nonrotating condensate mixture is
miscible (phase I) to which the wave functions of the two
components overlap entirely. In Fig. 4(a), it is found that the
two annular vortex arrays interlock in a manner such that the
density peak of one component is located at the density hole
of the other component.

Figure 4(b) shows the vortex structure and the correspond-
ing phase profile of the mixture with g11 = 55, α2 = 1, and
α12 = 1.3. The nonrotating counterpart has an asymmetric
separated ground state (phase II in Fig. 1). Due to the strong
repulsive interaction between two condensates which results in
the asymmetric separated characteristic, the two condensates
occupy the opposite side of each other.

Figure 4(c) shows the vortex structure and the correspond-
ing phase profile of a condensate mixture with g11 = 55,
α2 = 0.5, and α12 = 0.8. With respect to phase III in Fig. 1,
the nonrotating mixture has a ball-and-shell ground state,
i.e., the component with the larger intraspecies interaction
occupys the outside and forms a shell, while the component
with the smaller intraspecies interaction occupys the inside
and forms a ball. It is found that vortices in component 1 (of
larger intraspecies interaction) form a circular array around
the central low-density hole, while vortices in component 2
(of smaller intraspecies interaction) also form a circular array
which is closer to the center (see the inset of the density
profile or the phase profile plot). In addition to the vortices,
the “ball” of the nonrotating counterpart of component 2 is
actually pushed away (due to fast rotation) from the center and
forms a robust ringlike condensate located where the vortices
of component 1 are (i.e., interlocking). This robustness actually
resists its own vortices revolving into it.

In Fig. 4(d), we also show the vortex structure and its
corresponding phase profile of a mixture at the isotropic point,
with g11 = 55 and α2 = α12 = 1. Similar to the result of the
middle row of Fig. 2, fast-rotating condensates tend to form
the vortex-pair structure at the isotropic point.

D. Concluding remarks

The overall features of vortex structures in ultrafast-rotating
binary-mixture condensates can be understood as follows.
Pertaining to phase I in Fig. 1, when α12 = 0 where the two
components are not interacting with each other, the theory
is essentially reduced to the one for single components. In
this limit, triangular vortex lattices are expected to form
with � < �c, while annular vortex arrays are expected to
form with � > �c. As α12 is present and increases, vortex
cores of one component gradually shift away from those
of the other component and consequently with � < �c the
triangular lattices are distorted. Eventually the vortices for each
component will form a square lattice instead of a triangular
one. As α12 exceeds α2, equivalently for the system to shift to
phase II or III, the condensates can undergo phase separation to
spontaneously form domains. For one condensate, the cavity
of another condensate is where the lower effective potential is,
which is more apt to be occupied. However, more interlocking
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FIG. 4. (Color online) Vortex structures and
phase profiles of ultrarapidly rotating binary-
mixture condensates in the VLH state. In each
panel, the top row (bottom row) corresponds to
vortex structures (phase profiles), while the left
column (right column) pertains to component 1
(2). Relative interactions are the following:
(a) α2 = 1 and α12 = 0.5, (b) α2 = 1 and α12 =
1.3, (c) α2 = 0.5 and α12 = 0.8, and (d) α2 = 1
and α12 = 1. The interaction g11 = 55, quartic
trap strength λ = 1, and rotation rate � = 2.5 are
fixed for all figures. The inset in panel (c) shows
a more clear view of the vortices in component 2.
x and y axes are in units of

√
h̄/mω.

will cause wave functions to overlap more and at the same time
raise the interspecies interaction energy ∝ g12 |�1|2 |�2|2. In
order to prevent the above-mentioned interlocking that causes
high energies, the vortices are actually concentrated out of
the condensates and form the vortex sheets. Consequently the
two components form structures complementary to each other
and the total density is roughly described by the TF distribu-
tion |�1|2 + |�2|2 ∝ max[μTF − (mω2r2/2 + ur4/4),0]. The
results in the bottom row of Fig. 2 as well as in Figs. 3, 5, and
6 are examples of this.

IV. CONCLUSION

This paper investigates the equilibrium vortex structures
of ultrafast-rotating binary-mixture condensates trapped in a
harmonic-plus-quartic potential. In contrast to the harmonic
trap alone case where the system is unstable when the
rotation frequency �0 is higher than the radial trap oscillator
frequency ω, the added quartic trap can lead the system
to remain stable at higher rotation velocity (�0 > ω). Due
to the complexity of interactions in the binary system,
there often occur many metastable states in the fast-rotating

two-component condensate system and the standard
imaginary-time propagating approach may not really converge
to the true equilibrium states of the system. In this regard,
we have applied a combined numerical scheme to effectively
assure that the density profiles do really saturate at sufficiently
low temperatures. A critical rotating frequency �c which
characterizes the transition between the VL and the VLH states
is identified. Under high-rotation frequencies (�0 > ω), a
variety of vortex structures of the two-component condensates
are shown for � < �c, similar to those presented in Ref. [14],
and also for � > �c in particular for which various annular
vortex structures occur.
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