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Spontaneous crystallization of skyrmions and fractional vortices in fast-rotating and rapidly
quenched spin-1 Bose-Einstein condensates
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We investigate the spontaneous generation of crystallized topological defects via the combining effects of
fast rotation and rapid thermal quench on spin-1 Bose-Einstein condensates (BECs). By solving the stochastic
projected Gross-Pitaevskii equation, we show that, when the system reaches equilibrium, a hexagonal lattice of
skyrmions and a square lattice of half-quantized vortices can be formed in a ferromagnetic and antiferromagnetic
spinor BEC, respectively, which can be imaged by using the polarization-dependent phase-contrast method.
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I. INTRODUCTION

Topological defects are a manifestation of spontaneously
broken symmetries [1]. The formation and observation of
topological defects is one of the most fundamental and
fascinating topics in various aspects of physics, ranging from
condensed-matter physics to cosmology. However, owing to
the limitation of energy scales in earth-bound physics experi-
ments, topological defects are mostly created and observed in
condensed-matter systems. For example, magnetic domains,
walls of magnetized material, and string defects in 3He
superfluid phase transitions have been extensively studied [2].

Recently, owing to the realization of spinor Bose-Einstein
condensates (BECs) of alkali-metal atoms in an optical
trap [3,4], the creation of topological defects in ultracold
atomic systems has become possible. A spinor BEC is fully
characterized by the spin degrees of freedom and behaves
as a vector in the spin space. Theoretical studies for the
spinor BEC were pioneered by Ho [5] and independently
by Ohmi and Machida [6]. More recently, spinor BECs with
F > 1 [7–9] or with long-range dipolar interaction [10,11]
have also been theoretically investigated. An overview on the
physics of spinor BEC systems can be found in Ref. [12].
In general, the physical behavior of the spinor BEC depends
crucially on its magnetic properties, such that the interplay
between the superfluidity and the magnetism of the condensate
makes the spinor BEC a candidate to exhibit a variety of
nontrivial ordered states, such as skyrmions [13], Mermin-Ho
vortices [14], Anderson-Thouless vortices [15], and so forth.

So far, all theoretical studies regarding the formation of
topological defects in spinor BECs appear to manipulate the
external and internal degrees of freedom of the condensed
atoms at zero temperature. On the other hand, according
to the Kibble-Zurek scenario, topological defects can also
be created through phase transitions at finite temperatures,
which are fundamentally caused by spontaneous symmetry
breaking and thermal fluctuations near the critical point. In this
paper, we show that it is possible to create crystalline orders
of skyrmions and fractional vortices simply by thermally
quenching a rotating spin-1 BEC. This enables us to probe into

the very fundamental aspects of topological defects without
any engineering of dynamical processes, since evaporative
cooling is a prerequisite in creating BECs and the methods of
rotating condensates have been well developed in a variety of
ultracold atomic experiments. In the framework of mean-field
theory, the dynamics of a BEC at nonzero temperatures can
be described by the stochastic projected Gross-Pitaevskii
equation (SPGPE) [16], which relies on the assumption that
the system can be treated as a condensate band in contact with
a thermal reservoir comprising all noncondensed particles.
In such a scheme, the condensate band is described by
the truncated Wigner method [17] including the projected
c-field method, while the noncondensate band is described
by quantum kinetic theory [18,19]. In the following, we solve
the SPGPE numerically for a rotating trapped spin-1 BEC. We
show that when the system is quenched down to a very low
temperature a lattice of skyrmions and half-quantized vortices
(HQVs) can be created in the spinor BEC of 87Rb and 23Na,
respectively.

II. FORMALISM

The spin-1 BEC is characterized by a vectorial order
parameter, � = (�1,�0,�−1)T (the superscript T stands for
the transpose), where the components �j (j = ±1,0) denotes
the macroscopic wave function of the atoms condensed in the
spin state, |F = 1,mF = j 〉 ≡ |1,j 〉, that can be equivalently
expressed as �j = |�(r)|ςj (r), with ςj (r) being a three-
component spinor, normalized to the condition

∑
j ς

†
j ςj = 1.

The dynamics of �j in a confining potential is described by
the following coupled nonlinear Schrödinger equations:

ih̄∂t�j = Ĥ GP
j �j

= Ĥ�j + gs

∑
α=x,y,z

∑
n,k,l=0,±1

(F̂α)jn(F̂α)kl�n�
∗
k �l,

(1)

where Ĥ = −h̄2∇2/2m + V (r) + gn|�|2 denotes the spin-
independent part of the Hamiltonian, and F̂α are the matrices
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representing the Cartesian components of the spin angular
momentum with quantization axis fixed in the z axis, namely,

F̂x = 1√
2

⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠, F̂y = 1√

2

⎛
⎝ 0 −i 0

i 0 −i

0 i 0

⎞
⎠,

(2)

F̂z =
⎛
⎝ 1 0 0

0 0 0
0 0 −1

⎞
⎠.

The coupling constants gn and gs characterizing the density-
density and spin-exchange interactions, respectively, are re-
lated to the s-wave scattering lengths a0 and a2 in the total spin
channels Ftot = 0 and Ftot = 2 by gn = 4πh̄2(a0 + 2a2)/3m,
gs = 4πh̄2(a2 − a0)/3m [5,6]. The ground state of the spinor
BEC depends crucially on the sign of gs . For the ferromagnetic
coupling, gs < 0, the condensate is in the “axial” state,
|〈F̂〉| = 1, with 〈F̂〉 = ∑

ij ς
†
i (F̂)ij ςj [5]. On the other hand,

for the antiferromagnetic coupling, gs > 0, the condensate is in
the “polar” state, 〈F̂〉 = 0 [5]. Because we focus on the vortices
formed by the spin textures, it is more convenient to introduce
the basis kets |α〉 (α = x,y,z) which satisfy the conditions
F̂α|α〉 = 0. It is straightforward to show that |z〉 = |1,0〉, and

|x〉 = exp

(
− i

π

2
F̂y

)
|z〉 = 1√

2
(−|1,1〉 + |1, − 1〉), (3)

|y〉 = exp

(
i
π

2
F̂y

)
|z〉 = i√

2
(|1,1〉 + |1, − 1〉). (4)

Accordingly, we have �±1 = (±�x + i�y)/
√

2 and �0 =
�z. The spin texture, which is parallel to the local

magnetic moment, is defined by S(r) = iρ−1�̃
† × �̃, where

�̃ = (�x,�y,�z)T [20]. Consequently, we have Sx ∝
Re[(�1 + �−1)�∗

0 ], Sy ∝ Re[i(�1 − �−1)�∗
0 ], and Sz ∝

|�1|2 − |�−1|2. For later convenience, we define the unit
vector s(r) = S(r)/|S(r)|.

To study the nonequilibrium dynamics of a quenched
rotating spinor BEC, we generalize the formulas in Ref. [16]
to the following set of coupled SPGPEs:

∂t�j = P
{
− i

h̄
Ĥ GP

j �j+ γj

kBT

(
μ − Ĥ GP

j

)
�j+dWj

dt

}
, (5)

where T and μ denote the final temperature and chemical
potential, γj the growth rate for the j th component, and
dWj/dt is the complex-valued white noise associated with
the condensate growth. The projection operator P restricts the
dynamics of the spinor BEC in the lower-energy region below
the cutoff energy ER . In the rotating frame, Ĥ is replaced by
Ĥ − 	L̂z, where L̂z = −ih̄(x∂y − y∂x) is the z component of
the orbital angular momentum, and 	 is the angular frequency
of rotation. Because we focus on the fast-rotating BECs, in
which the atomic cloud is shaped like a two-dimensional (2D)
droplet, it is reasonable to treat the system as two-dimensional.
We therefore assume V (r) = mω2(x2 + y2 + λ2z2)/2 with
λ 	 1. The effective 2D interaction strength can be obtained
by integrating the wave functions with respect to z to eliminate
the axial degree of freedom. The numerical procedures for
integrating the set of coupled SPGPEs are described as follows.
First, the initial state of each �j is sampled by using the grand-
canonical ensemble for a free ideal Bose gas at a temperature T0

below the critical temperature and of chemical potentials μj,0.
The spatial dependence of the initial state can be specified as
a linear combination of some basis functions. Here, we adopt
the basis consisting of plane waves with quantized momentum
k = 2π (nx,ny)/L (where nx , ny are integers and L is the size
of the computation domain); i.e., �j (t = 0) = ∑ER

k aj ;kψk(r),
where ψk(r) are the plane-wave basis functions. The conden-
sate band lies below an energy cutoff ER > Ek = h̄2|k|2/2m.
Furthermore, the distribution is sampled by aj,k = (Nj,k +
1/2)1/2ηj,k, where Nj,k = {exp[(Ej,k − μj.0)/kBT0] − 1}−1

and ηj,k are the complex Gaussian random variables with
moments 〈ηj,kηj,k′ 〉 = 〈η∗

j,kη
∗
j,k′ 〉 = 0 and 〈ηj,kη

∗
j,k′ 〉 = δkk′ .

Second, to simulate the thermal quench, the temperature and
chemical potential of the noncondensate band are altered to the
new values T < T0 and μ > μj,0. For convenience, we adopt
the oscillator units in the numerical computations, where the
length, time, and energy are respectively scaled in units of√

h̄/mω, ω−1, and h̄ω.

III. RESULTS AND DISCUSSIONS

We first study the spinor BEC of 87Rb, which has gs < 0.
The total number of the modes are nx,ny = 256 and the
energy cutoff is chosen at nxc,nyc = 128. The parameters are
	 = 0.95, T = 10 nK, μ = 8, and h̄γj /kBT = 0.03 for all
�j ’s. The time evolutions of the density profiles for �j ’s are
shown in Fig. 1. During the evaporative cooling, the rotating
condensates grow up and the emergent vortices start closely
binding up and forming vortex trimers in each �j . When
the system reaches equilibrium, these vortex trimers arrange
themselves into some interwoven lattice structures such that
each vortex core of �j is filled up with particles of the
remaining two components. In other words, quantized vortices,

FIG. 1. (Color online) Snapshots of (a) |�−1|2, (b) |�0|2,
(c) |�1|2, and (d) |�|2 for the quenched rotating spinor BEC of 87Rb.
When the system reaches equilibrium at T = 10 nK with 	 = 0.95,
μ = 8 (rightmost column), the crystalline order of vortex trimers is
established in each �j . The particle numbers in the spinor BEC are
N±1 ≈ 4.84 × 103, N0 ≈ 4.79 × 103.
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FIG. 2. (Color online) (a) The equilibrium spin textures for the
spinor BEC of 87Rb. (b) Distribution of Sz in the spin textures.
(c) The orientations of the unit vector s(r) for a skyrmion. The color
of each arrow indicates the magnitude of Sz. (d) The density profile
of the topological charges.

either inter- or intraspecies, avoid overlapping with each
other. The shapes of the trimer structures in all components
are somewhat different. To characterize these structures, we
calculate the incompressible kinetic energy per particle for
each �j . This can be done by writing �j = |�j | exp(iϕj )
and defining the current Zj = |�j |∇ϕj = Z(i)

j + Z(c)
j [21] in

terms of the solenoidal and irrotational fields, where ∇ · Z(i)
j =

0, ∇ × Z(c)
j = 0. The incompressible energy is defined by

E (i)
k,j = (1/2)

∫
d2r|Z(i)

j |2, which corresponds to the kinetic
energy of swirls in the superflows. Consequently, we find that
E (i)

k,j /Nj = 19.48, 19.27, 20.05 for j = ±1,0, respectively.
The spin textures are shown in Fig. 2(a), where a hexagonal
lattice is visualized. Furthermore, the spatial variation of
the local spin moments parallel to the axis of rotation is
plotted in Fig. 2(b). An enlarged perspective view of the
three-dimensional orientations of the local spins is shown
in Fig. 2(c). Taking the island around the trap center, for
example, we see that the innermost spin points into the
paper, while the others increasingly twist and bend in the
upward direction. This vortexlike arrangement of magnetic
moments is exactly the configuration of a skyrmion [22–24].
Since the central spin in the skyrmion is perpendicular to the
rotating plane, Sx and Sy must vanish therein, implying that
the skyrmions must be centered at the regions of �0 = 0,
i.e., the cores of the vortex trimer in �0. The topological
charge density, σ = s · (∂s/∂x × ∂s/∂y)/4π [23], is shown
in Fig. 2(d), which exhibits a hexagonal lattice structure.
Numerical integration over the primitive unit cell reveals
that each skyrmion carries a topological charge Q = −1.
We notice that the crystallization of skyrmions has recently
been observed in various magnetic materials characterized by
the Dzyaloshinskii-Moriya interaction [23,24]. Amazingly, the

FIG. 3. (Color online) Snapshots of (a) |�−1|2, (b) |�0|2,
(c) |�1|2, and (d) |�|2 for a quenched rotating spinor BEC of 23Na.
When the system reaches equilibrium at T = 10 nK with 	 = 0.8,
μ = 25 (rightmost column), the crystalline order of vortex dimers is
established in each �j . The particle numbers in the spinor BEC are
N±1 ≈ 4.55 × 104, N0 ≈ 7.70 × 104.

spin textures in these magnetic materials highly resemble those
in Fig. 2(a).

For the case of gs > 0, we consider the spinor BECs of 23Na.
We set 	 = 0.8, T = 10 nK, μ = 25, and h̄γj /kBT = 0.03
for all spin components. The total number of modes and energy
cutoff remain the same as those for the case of 87Rb. In Fig. 3,
the time evolutions of the density profiles for �j are shown.
The nucleation of the vortices in the current case is similar
to that in the case of 87Rb, except that a square lattice of
tightly bound vortex dimers is formed in each component.
Consequently, we find that E (i)

k,j /Nj = 13.44, 13.45, 12.54 for
j = ±1,0, respectively. The equilibrated spin textures on the
rotating plane are shown in Fig. 4(a), in which a mosaic of
magnetic domains with staggered magnetization is created.
In Figs. 4(b) and 4(c), we see that almost all spins in the
magnetic domains lie in the xy plane. Spins belonging to the
same domain align nearly unidirectionally. Note that the spins
reverse their magnetization through a Bloch wall transition in
a very narrow region near the boundary between two adjacent
domains. These staggered magnetic domains act as the
smoking gun of HQVs, which have been predicted to exist in
superfluid 3He [2] and superconductors [25]. Considering the
transformation � → Ĝ(θ )R̂(n,χ )�, where Ĝ(θ ) = exp(iθ ) is
a gauge transformation and R̂(n,χ ) = exp(iχn · F̂) is a spin
rotation through an angle χ about the unit vector n, a HQV
entails a spin rotation with χ = π followed by a global phase
change of π in �. Without loss of generality, we assume
s(r) = cos φ(r)ex + sin φ(r)ey . Numerically, we verify that
the spin textures remain unchanged through the transformation
Ĝ(π )R̂(s,π )� = (e−2iφ(r)�−1,�0,e

2iφ(r)�1)T . Upon requir-
ing Ĝ(π )R̂(s,π )� =ei2π�, it follows that e−2iφ(r)�−1 = �1
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FIG. 4. (Color online) (a) The equilibrium spin textures for the
spinor BEC of 23Na. (b) Distribution of Sz in the spin textures.
(c) The orientations of the unit vector s(r) in the adjacent magnetic
domains. The color of each arrow indicates the magnitude of Sz.
(d) The modulus of |�1 − e−2iφ(r)�−1|, where dark shaded regions
reveal the locations of HQVs.

and e2iφ(r)�1 = �−1. The redundancy of the last equality
implies that there are multiple solutions satisfying the cri-
terion, |�1 − e−2iφ(r)�−1| = 0, or equivalently, |�−1| = |�1|.
In Fig. 4(d), the modulus |�1 − e−2iφ(r)�−1| is plotted where
the dark shaded areas represent the core positions of HQVs,
which form a square lattice apparently. Likewise, the HQVs
are localized at the cores of vortex dimers in �0. Our results
are consistent with those obtained by means of dynamical
creation [26], where a lattice of HQVs can be created in a
rotating optical trap when additional pulsed magnetic trapping
potentials are applied. Furthermore, the ground state of a
rotating dipolar spinor BEC has been shown to have the same
structure when the dipole-dipole interaction is small compared
to the contact ones [27].

We note that an 	 comparable to ω is needed to stabilize
the crystalline orders of defects. Under such a fast rotation,
the filling factor ν, i.e., the ratio of the number of atoms to the
number of vortices, can have a value of a few hundreds for
each component, as shown in Figs. 1 and 3. According to the
criterion in Ref. [28], the system enters the mean-field quantum
Hall regime, in which the mean-field theory still applies yet
the state of the system can be well described in the lowest
Landau-level approximation. When 	 is not sufficiently large,
the crystallization does not arise, albeit some few topological
defects may be readily created in the condensate. For example,
in our simulations with 	 = 0.3, we find only a few HQVs
nucleating in the spinor BEC of 23Na during the rapid rotational
evaporative cooling. The situation is somewhat different in
the case of 87Rb, where Mermin-Ho vortices, rather than the
skyrmions, are created in the condensate. Furthermore, to
see whether the crystallization is robust against the thermal
fluctuations arising from the growth of condensate, we have
assumed a range of final equilibrium temperatures in the
simulations. We find that both crystalline orders remain intact
for temperatures lower than 50 nK. At higher temperatures,
however, the crystallization is thwarted by the fluctuations
of spin textures so the lattice becomes disordered and starts
melting when the system approaches the critical regime.

IV. CONCLUSIONS

In summary, we have investigated the nonequilibrium
dynamics of spin-1 BECs during rapid rotational evaporative
cooling. Crystallization of skyrmions and HQVs is predicted
to arise in the spinor BEC of 87Rb and 23Na, respectively. To
resolve the spatial magnetization of the crystallized topological
defects, the images have to be taken in situ, and this can
be achieved basically by using the polarization-dependent
phase-contrast technique [29].
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