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Abstract:The dynamic behavior of an ellipse falling freely inside a Newtonian fluid is 
investigated. The immersed boundary method is used to simulate the cases at different aspect 
ratios and initial falling angles. Within the considered aspect ratio and falling angle, the 
trajectories fall into some modes including fluttering, tumbling, fluttering-tumbling, turning 
and steady falling motions. The cases are very sensitive to perturbations. Nevertheless, when 
the ellipse has the closer form to a circular cylinder, it can persist its position as initial due to a 
high moment of inertia. Furthermore, the initial falling angle does not affect the flow patterns 
significantly. 
Keywords: Falling ellipse, immersed boundary method, fluid-structure interaction, nonlinear 
dynamics. 

 

1. INTRODUCTION 

It is a common fact that falling objects move precisely under the influence of gravity except when their motions are 
retarded through fluid interactions. For examples, leaves, tree seeds, and paper cards all follow complicated 
downward trajectories as they fall under the gravity. They flutter and tumble down in a seemingly unpredictable and 
complex manner.  Some experimental and numerical works have been conducted to study the rich dynamical 
behavior of freely falling objects [1-6].  

Belmonte et al. [1] and Mahadevan et al. [2] have done the experimental studies for the thin flat strips falling 
through a fluid in a vertical cell and the tumbling cards, respectively. Wang and Pesavento [3] studied the 
aerodynamics of freely falling plates for a quasi two-dimensional flow, which is a typical state for a leaf of business 
card falling in air. They performed the experimental and the direct numerical simulation of the two-dimensional 
incompressible Navier-Stokes equations for the falling objects. Andersen et al.  [4, 5] have investigated the unsteady 
aerodynamics of fluttering and tumbling plates. The thickness-to-width ratio and the dimensionless moment of 
inertia were varied to observe the transitions between fluttering, tumbling, and steady descent of falling objects. 
Recently, Jin and Xu [6] have carried out the experimental and numerical simulations to study the unsteady 
aerodynamics of freely falling plates. The elliptical and rectangular plates were considered in their work. The plate 
falling velocity and trajectory were almost the same for the elliptical and rectangular plates under the experimental 
condition. The main dynamic differences due to the geometrical shapes were the angular velocity at which the 
rectangular plate rotated much slower than the elliptical plate.  

From the previous studies, it should be noted that the case of freely falling objects are very sensitive to 
perturbations or initial conditions. Therefore, we investigate the effect of aspect ratio and initial angle of a freely 
falling ellipse immersed in a Newtonian fluid in the present study. According to the obtained results, we observe 
some interesting trajectories of a freely falling ellipse and categorize them into a mode diagram. 

 

2. NUMERICAL METHODS 

 
The non-dimensional continuity and momentum equations are written as follows 
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We used the immersed boundary method [7] to solve the problems in this study. The three-step time-split is 

used to advance the flow field. First the velocity is stepped from the nth time level to the first intermediate level “*” 
by solving the convective-diffusive terms without the pressure and virtual force for the momentum Equation (2). 
Subsequently, this step can be stated in the following form 

 

,S* n
n

t
=

∆
−uu             (3) 

where S is the convective and diffusive terms of the momentum equations. 
          The intermediate velocity in Equation (3), in general, does not satisfy the divergence-free condition (1). At the 
second step we advance the first intermediate velocity by including the pressure term 
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          By applying the divergence on both sides, Equation (4) becomes 
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Due to conservation of mass we have 

0** =⋅∇ u .           (6) 

Then substitution of Equation (6) to (5) gives the Poisson equation 
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Once Equation (7) is solved, we can advance the intermediate velocity in Equation (4). Furthermore, we update the 
velocity to the (n+1)th time level by imposing the virtual forces, f, as follow 
 

1
1 ** +

+

=
∆
− n

n

t
fuu .          (8) 

 
         The virtual force term, f, in Equation (8) represents the action of a solid upon a fluid. The force reveals the 
existence of a force to hold or drive a solid body when it is stationary or moving. To satisfy the no-slip condition for 
a solid motion, the force acting on the solid should ensure that the fluid velocity (u) equal the solid velocity ( su ) at 

the (n+1)th time step i.e. 11 ++ = n
s

n uu . Hence, the virtual force is defined as the rate of momentum changes of solid 
body and proportional to the difference between the solid velocity at the (n+1)th time step and the fluid velocity at 
the nth time step. The force exists on the solid body and zero elsewhere. Furthermore, it can be simply written as 
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where su is the velocity of solid. η  denotes the fraction of solid within a cell where η  equal to 1 and 0 for solid and 
fluid cells, respectively. There is no different computational time between stationary and moving body cases due to a 
fixed grid arrangement. Subsequently it reduces computational cost and memory requirements, especially for 
moving object cases. 
          The motion of a solid body/particle, su , will be tracked in the Lagrangian reference by the equations of linear 
momentum and transportation of a rigid body as follows 
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Eq. (10) can be rewritten in the differential form as 
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while the torque acting upon the solid, sT , and the translation of the solid can be stated as 
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When considering the rotation, the particle velocity inside the solid body moving with the translational velocity, sv , 
at the center of rotation and the angular velocity, ω , can be expressed as: 

rvu ×+= ωss  ,            (14) 
where, 

sF  is the hydrodynamic force, 

sG is the external force including gravitational and buoyancy force, 

sT  is the torque acting upon the solid particle, 

sI  is the inertia tensor, 
ω  is the angular velocity of the solid particle, 

sm  is the mass of the particle, 

sv  is the translational velocity of the center of mass, 

sx  is the center position of the solid particle. 
 

3. RESULTS AND DISCUSSION  

We perform the simulations to study flow behaviors of a freely falling ellipse in a fluid domain. Since the flow is 
very sensitive to perturbation, the three values, 00, 450, and 900, of the initial angle of attack of the falling ellipse 
with respect to the horizontal axis, are chosen in the simulations. The aspect ratio is changed also to investigate the 
effect of the thickness. The density of the ellipse and the fluid are 2.7 g/cm3 and 1.0 g/cm3, respectively. The 
kinematic viscosity of the fluid is 0.005 cm2/s. The chord of the ellipse is 0.648 cm while the thickness is varied.  
 

The vortex shedding and the wake structures of the freely falling ellipse are shown in Figs. 1 and 2 for the 
fluttering and tumbling modes, respectively. The vortex sheds when the ellipse glides at a small initial angle  (1a). 
The ellipse turns (1b) and vortices are shed from the leading and trailing edge (1c). Subsequently, the ellipse 
resumes gliding and the old leading edge becomes the new trailing edge by shedding the vortex (1d). For the 
tumbling motion, the ellipse glides by shedding vortex at the trailing edge (2a). The ellipse starts turning (2b) and 
sheds vortex from the old leading edge (2c). Turning is completed and the ellipse repeats to glide (2d). 

 
When the ellipse glides with an angle of attack, it leads to two high pressure regions, one below the ellipse 

close to the leading edge and the other above the ellipse close to the trailing edge. These regions create a torque. The 
resulting torque rotates the ellipse as it begins to move broadside-on and slows down. If the rotation angle is larger 
than 900, then the ellipse tumbles. Otherwise, it periodically oscillates from side to side. 
 

Plot of the trajectory of the falling ellipse is presented in Fig 3. Within the considered range of the aspect ratio 
and α, the flow variations due to the ellipse falling motion can be categorized to be four modes, i.e. fluttering, 
tumbling, fluttering-tumbling, turning, and straight/steady falling modes. The motion of the falling ellipse tends to 
be fluttering when the ellipse is initially placed in horizontal position, α = 0o The ellipse oscillates from side to side 



 
 

 

as it descends with alternating gliding at a low initial angle and a rotational motion at the turning points. The 
rotational angle at the turning point becomes larger for a decreasing aspect ratio due to a smaller moment of inertia. 
The ellipse can not persist the fluttering motion and it tumbles finally (see the fluttering-tumbling mode).  
 

In terms of the effect of the initial position, our result shows a good agreement with the previous study [8] A 
horizontally held ellipse should have fluttered to the ground as it falls. On the other hand, a vertically held ellipse 
should have fallen for a moment before tumbling and landing far from the point directly below the release point. 
 

The fluttering and tumbling motion can be explained by following the observation of Maxwell [9]. When the 
ellipse glides with an angle of attack, 0≠α , it leads to two high pressure regions, one below the ellipse close to the 
leading edge, and the other above the ellipse close to the trailing edge. These regions create a torque. The resulting 
torque rotates the ellipse as it begins to move broadside-on and slows down. If the rotation angle is larger than 900, 
then the ellipse tumbles. Otherwise, it periodically oscillates from side to side. 
 

An initial angle, α = 45oleads the ellipse tumbles immediately after being released except for the low aspect ratio 
case. Instead of tumbling, the ellipse travels form side to side. It should be noted that, when the ellipse falls in the 
fluid field, it can hold its motion as the initial at horizontal, α = 0o and vertical, α = 90o for a bigger aspect ratio 
because of a higher moment of inertia. The initial angle does not influence the motion significantly so long as the 
ellipse has a close form to a circular cylinder. 

 

Fig. 1: The vorticity contours at the fluttering motion 



 
 

 

    

Fig. 2: The vorticity contours at the tumbling motion 

 

 

Fig. 3: Trajectory modes of a freely falling ellipse at different aspect ratio and initial angle 



 
 

 

 

4. CONCLUSIONS 

A freely falling ellipse with a variety of aspect ratios and initial angles has been investigated using an 
immersed boundary method. A horizontally held ellipse should have fluttered to the ground as it falls. On the 
other hand, a vertically held ellipse should have fallen for a moment before tumbling and landing far from the 
point directly below the release point. When the ellipse with a higher aspect ratio falls in the fluid field, it can 
hold its motion as initial due to a higher moment of inertia.  
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